Logarithmic Function MCQ Quiz - Objective Question with Answer for Logarithmic Function - Download Free PDF

Last updated on Apr 22, 2025

Latest Logarithmic Function MCQ Objective Questions

Logarithmic Function Question 1:

If y = In(emx + e-mx), then what is the value of  at x = 0 ?

  1. -1
  2. 0
  3. 1
  4. 2
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 0

Logarithmic Function Question 1 Detailed Solution

Concept:

If y = ln f(x) then 
Calculation:

Given function is y = ln(emx + me-mx)

Differentiating, we get

At x = 0, we have

⇒ 

∴ For y = ln(emx + me-mx),  at x = 0.

Logarithmic Function Question 2:

If  then  is equal to

  1. None of these
  2. None of the above

Answer (Detailed Solution Below)

Option 4 : None of these

Logarithmic Function Question 2 Detailed Solution

Concept:

Chain Rule: 

  • If y = f(g(x)), then dy/dx = f '(g(x) × g'(x)
  • If y = p(x)/q(x), then dy/dx = 

 

Formula used:

  • (log x)' = 1/x
  • (xn)' = n xn-1

 

Calculation:

If  ,

then, 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

∴ The correct answer is option (4).

Logarithmic Function Question 3:

If x2y - 2x + y = 0; |x|  is equal to-

  1. 4
  2. 2
  3. 3

Answer (Detailed Solution Below)

Option 2 : 2

Logarithmic Function Question 3 Detailed Solution

Explanation:

We know that

log(1 + x) = x + 

and 

log(1 - x) = -x + 

Subtracting them we get

Therefore

 = 

 = ...(i)

Now, given x2y - 2x + y = 0

i.e., (x2 + 1)y = 2x ⇒ y = 

Hence 

             = 

            = 

           = 

Putting this value in (i) we get

 =  = 2

Option (2) is true.

Logarithmic Function Question 4:

If , then a possible value of is

  1. 3
  2. 2

Answer (Detailed Solution Below)

Option 1 : 3

Logarithmic Function Question 4 Detailed Solution

To solve the equation , follow these steps:

  1. Remove the outer logarithm:
  2. Remove the inner logarithm:
  3. Solve for \(x^2\):
  4. Solve for \(x\):

Therefore, the possible values of x are and .

Logarithmic Function Question 5:

The inequality implies that

  1. g(x) > f(x) > 0 for a > 0

  2. f(x) > g(x) > 0 for a > 0

  3. g(x) > f(x) > 0 for 0 < a < 1 and f(x) > g(x) > 0 for a > 1

  4. f(x) > g(x) > 0 for 0 < a < 1 and g(x) > f(x) > 0 for a > 1

Answer (Detailed Solution Below)

Option 4 :

f(x) > g(x) > 0 for 0 < a < 1 and g(x) > f(x) > 0 for a > 1

Logarithmic Function Question 5 Detailed Solution

the answer is f(x) > g(x) > 0 for 0 f(x) > 0 for a > 1 (using properties of logarithmic inequalities)

Option 4.

Top Logarithmic Function MCQ Objective Questions

If p > q >1 and 0

  1. loga(p – a) > loga(q – a)
  2. loga(p + a) > loga(q + a)
  3. loga(p – a) < loga(q – a)
  4. loga(p + a) < loga(q – a)

Answer (Detailed Solution Below)

Option 3 : loga(p – a) < loga(q – a)

Logarithmic Function Question 6 Detailed Solution

Download Solution PDF

Explanation:

For a log function with base a as 0

The above graph is valid for,

x > 0 and 0

Since the function y = logax is a decreasing function for base a ∈ (0, 1). So, while operating loga on a given inequality, the sign of the inequality will change.

Calculation:

Given:

p > q > 1

As, 0

⇒ (p – a) > (q – a) > 0

This is satisfying the condition for the domain of loga(p – a) and loga(q – a).

Operating log function on both sides,

loga(p - a) a(q - a)

Option 3 is correct.

Find out the value of x if logx 4 + logx 16 + logx 64 = 12

  1. 1
  2. 2
  3. 7
  4. 54

Answer (Detailed Solution Below)

Option 2 : 2

Logarithmic Function Question 7 Detailed Solution

Download Solution PDF

Given:

logx 4 + logx 16 + logx 64 = 12

Formula Used:

If logx y = a, then xa = y

logx ab = b logx a

Calculation:

logx 4 + logx 16 + logx 64 = 12

⇒ logx 22 + logx 24 + logx 26 = 12

⇒ 2 logx 2 + 4 logx 2 + 6 logx 2 = 12

⇒ 12 logx 2 = 12

⇒ logx 2 = 1

⇒ 2 = x1

∴ x = 2

If log (x + 2) + log (x − 2) = log 5 then the value of x will be

  1. -3
  2. 3
  3. ± 3
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : 3

Logarithmic Function Question 8 Detailed Solution

Download Solution PDF

Concept:

Logarithm properties

Product rule: The log of a product equals the sum of two logs.

Quotient rule: The log of a quotient equals the difference of two logs.

Calculation:

Given:

log (x + 2) + log (x − 2) = log 5

⇒ log [(x + 2) (x – 2)] = log 5                (∵ )

⇒ log (x 2 – 4) = log 5

⇒ x2 – 4 = 5

⇒ x2 = 9

∴ x = ± 3

Here x ≠ -3 is not possible because (x – 2) should be greater than zero.

∴ x = 3

A radioactive substance decays at a rate proportional to the amount of substance present. If half of the substance decays in 100 years, then what is the decay constant (proportionality constant) ?

Answer (Detailed Solution Below)

Option 1 :

Logarithmic Function Question 9 Detailed Solution

Download Solution PDF

Concept

Half-life:  

Where k is the decay constant.

Calculation:

We know that  

Putting the value of t1/2 = 100 years,

⇒ 100 = 

⇒ k = 

∴ Decay constant is .

The relation between half life (T) and decay constant (λ) is:

  1. λT = 1
  2. λT = loge2
  3. λ = log2T

Answer (Detailed Solution Below)

Option 3 : λT = loge2

Logarithmic Function Question 10 Detailed Solution

Download Solution PDF

CONCEPT:

  • As per radioactive decay law, the total number of nuclei of radioactive compounds after radioactive decay in the sample is given by given equation

where N is the number of nuclei of radioactive compounds after radioactive decay, N0 is the number of nuclei of radioactive compounds initially, λ is the decay constant and t is the time of radioactive decay.

  • Half-Life: Half-life is the time required for a radioactive substance to reduce to its half initial value.

CALCULATION:

  • From the definition of half-life, radioactive decay in time T (half-life) will be half of its initial value

N = N/ 2

so at time t = T, no of nuclei is N = N0 / 2

where N0 is the initial number of nuclei.

From radioactive decay law:

Taking log on both the sides

⇒ λ T = loge 2

  • So the correct answer will be option 3.

If x = 27 and y = log4, then xy equals

  1. 64
  2. 16
  3. 3/7
  4. 1/16

Answer (Detailed Solution Below)

Option 1 : 64

Logarithmic Function Question 11 Detailed Solution

Download Solution PDF

Concept:

  • If m and n are positive real numbers then, loga(mn) = nlogam.
  • If a is a positive real number and m is a positive rational number then, .     


Calculation:

If a and b are positive real numbers other than unity, then the least value of |loga + logb|, is

  1. 0
  2. 1
  3. 2
  4. None of these

Answer (Detailed Solution Below)

Option 3 : 2

Logarithmic Function Question 12 Detailed Solution

Download Solution PDF

Concept:

AM, GM, HM Formulas

If A is the arithmetic mean of numbers a and b and is given by ⇔ 

If G is the geometric mean of the numbers a and b and is given by ⇔ 

If H is the Harmonic mean of numbers a and b and is given by ⇔ 

Relation between AM, GM and HM

  1. G2 = AH
  2. AM  ≥  GM  ≥  HM


Change of base rule

Calculation:

Let, loga = x

Then, 

We know that,

AM ≥ GM

⇒ 

⇒ 

⇒ 

So,  

Answer (Detailed Solution Below)

Option 3 :

Logarithmic Function Question 13 Detailed Solution

Download Solution PDF

Concept:

We know that,

 ---(1)

Calculation:

Given:

By using above property, It can be written as:

Important Points

Properties of Logarithms:

Answer (Detailed Solution Below)

Option 4 : 3

Logarithmic Function Question 14 Detailed Solution

Download Solution PDF

Given:

We have a logarithm expression 'Log327'

Concept:

Logarithm

Formula Used:

Logab = x 

a= b

Calculation:

Log327 = n

⇒ 3n = 27

⇒ 3n = 33

⇒ n = 3
∴ The value of Log327 is 3.

∫dx/x = log |(x)| is not possible when:  

  1. x = 0
  2. x = 1
  3. x = -2
  4. x = -1

Answer (Detailed Solution Below)

Option 1 : x = 0

Logarithmic Function Question 15 Detailed Solution

Download Solution PDF

Explanation:

Consider the function 

with the intention of examining the function's continuity for all real numbers, we will find that the function is discontinuous at x = 0, and hence the function is not integrable at x = 0.

However, if we review it within the region of all positive real numbers or all negative real numbers, then the function is continuous, and also integrable in this region.

This is the consolation we needed that the function is integrable for all positive real numbers (or negative numbers).

Moreover, the integration of the function  is ln|(x)|, which is not defined for x = 0.

So this further confirms the fact that  is not integrable only for x = 0 (since the integration of  is not defined for x = 0).

Hot Links: teen patti wealth teen patti master gold teen patti game online