माना कि \(f\left( {x,y} \right) = \;\left\{ {\begin{array}{*{20}{c}} {\frac{{xy}}{{\sqrt {{x^2} + {y^2}} }}\;\;\;{x^2} + {y^2} \ne 0}\\ {0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x = y = 0} \end{array}} \right.\), फिर Then Which of the following is not Correct?

This question was previously asked in
BPSC Asstt. Prof. ME Held on Nov 2015 (Advt. 22/2014)
View all BPSC Assistant Professor Papers >
  1. f(x, y) मूल पर अवकलनीय नहीं है
  2. f(x, y) मूल पर निरंतर है
  3. f(0,0) = f(0,0)
  4. fy (0,0) = f(0,0)

Answer (Detailed Solution Below)

Option 1 : f(x, y) मूल पर अवकलनीय नहीं है

Detailed Solution

Download Solution PDF

संकल्पना:

(x, y) = (a, b) के लिए परिभाषित एक फलन f(x, y) को (x, y) = (a, b) पर निरंतर कहा जाता है यदि:

i) f(a, b) = (x, y) = (a, b) पर f(x, y) का मान परिमित है।

ii) फलन f(x, y) की सीमा मौजूद है जैसे (x, y) → (a, b) और (x, y) = (a, b) पर f(x, y) के मान के बराबर है

\(\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} f\left( {x,y} \right) = f\left( {a,b} \right)\)

ध्यान दें:

किसी फलन को किसी बिंदु पर अवकलनीय होने के लिए, यह उस बिंदु पर भी निरंतर होना चाहिए।

गणना:

दिया हुआ:

\(f\left( {x,y} \right) = \;\left\{ {\begin{array}{*{20}{c}} {\frac{{xy}}{{\sqrt {{x^2} + {y^2}} }}\;\;\;{x^2} + {y^2} \ne 0}\\ {0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x = y = 0} \end{array}} \right.\)

फलन f(x, y) निरंतर होने के लिए:

\(\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} f\left( {x,y} \right) = f\left( {a,b} \right)\) और परिमित।

f(a,b) = f(0,0) ⇒ 0 (दिया गया)

\(\mathop {\lim }\limits_{\left( {r,\theta } \right) \to \left( {0,0} \right)} f\left( {r,\theta} \right) =\frac{ r^2cos\theta rsin\theta }{r} \)

fx(0, 0) = \(\mathop {\lim }\limits_{\left( {h,0 } \right) \to \left( {0,0} \right)}\){f(h, 0) - f(0, 0)} / h = 0 

fy(0, 0) = \(\mathop {\lim }\limits_{\left( {0,k } \right) \to \left( {0,0} \right)}\){f(0, k) - f(0, 0)} / k = 0 

 

∵ the limit value is defined and function value is 0 at (x,y) = (0,0), ∴ the function f(x,y) is continuous.

Hence, Option 2, 3 & 4 all are correct 

Hence, Option 1 is not correct 

Hence, The Correct Answer is option 1.

Latest BPSC Assistant Professor Updates

Last updated on May 9, 2025

-> The BPSC Assistant Professor last date to apply online has been extended to 15th May 2025 (Advt. No. 04/2025 to 28/2025).

-> The BPSC Assistant Professor Notification 2025 has been released for 1711 vacancies under Speciality (Advt. No.04/2025 to 28/2025).

-> The recruitment is ongoing for 220 vacancies (Advt. No. 01/2024 to 17/2024).

-> The salary under BPSC Assistant Professor Recruitment is approximately Rs 15600-39100 as per Pay Matrix Level 11. 

-> The selection is based on the evaluation of academic qualifications &  work experience and interview.

-> Prepare for the exam using the BPSC Assistant Professor Previous Year Papers. For mock tests attempt the BPSC Assistant Professor Test Series.

More Analysis Questions

Get Free Access Now
Hot Links: teen patti tiger teen patti win teen patti sweet teen patti joy 51 bonus