If tan8 θ + cot8 θ = m, then what is the value of tan θ + cot θ

This question was previously asked in
CDS Elementary Mathematics 16 April 2023 Official Paper
View all CDS Papers >
  1. \(\sqrt{\sqrt{\mathrm{m}+2}+2}\)
  2. \(\sqrt{\sqrt{\sqrt{m+4}+2}}\)
  3. \(\sqrt{\sqrt{\sqrt{m+2}+2}+2}\)
  4. \(\sqrt{\sqrt{\sqrt{\mathrm{m}+4}+2}+2}\)

Answer (Detailed Solution Below)

Option 3 : \(\sqrt{\sqrt{\sqrt{m+2}+2}+2}\)
Free
UPSC CDS 01/2025 General Knowledge Full Mock Test
8 K Users
120 Questions 100 Marks 120 Mins

Detailed Solution

Download Solution PDF

Formula used:

(x + \(\frac{1}{x}\))2 = (x2 + \(\frac{1}{x^2}\)) + 2

(x + \(\frac{1}{x}\)) = \(\sqrt{[(x^2 + \frac{1}{x^2}) + 2]}\)

Calculation:

Given that 

tan8 θ + cot8 θ = m

Since, cot θ = 1/tan θ. Therefore,

tan8θ + (1/tan2θ) = m

Let tan θ = n then 

n8 + 1/n8 = m      ---(1)

We know that , (x + \(\frac{1}{x}\)) = \(\sqrt{[(x^2 + \frac{1}{x^2}) + 2]}\)

⇒ (n4 + 1/n4) = \(\sqrt{[(n^8 + \frac{1}{n^8}) + 2]}\)

⇒ (n4 + 1/n4) = \(\sqrt{[m + 2]}\)

Again applying the same identity

⇒ (n2 + 1/n2) = \(\sqrt{(\sqrt{(m + 2)}+2)}\)

Again applying the same identity

⇒ (n + 1/n) = \(\sqrt {\sqrt{(\sqrt{(m + 2)}+2)}+2}\)

But, n = tan θ 

⇒ tan θ + 1/tan θ = \(\sqrt {\sqrt{(\sqrt{(m + 2)}+2)}+2}\)

∴ tan θ + cot θ = \(\sqrt{\sqrt{\sqrt{m+2}+2}+2}\)

Latest CDS Updates

Last updated on Jun 18, 2025

-> The UPSC CDS 2 Registration Date has been extended at upsconline.gov.in. for 453 vacancies.

-> Candidates can now apply online till 20th June 2025.

-> The CDS 2 Exam will be held on 14th September 2025.

-> Attempt UPSC CDS Free Mock Test to boost your score.

-> The selection process includes Written Examination, SSB Interview, Document Verification, and Medical Examination.  

-> Refer to the CDS Previous Year Papers to enhance your preparation. 

Get Free Access Now
Hot Links: teen patti yes teen patti vip teen patti gold real cash