खालील संचातील संख्यांप्रमाणेच ज्या संचातील संख्या संबंधित आहेत तो संच निवडा.

(सूचना: संख्यांचे घटक अंकांमध्ये खंडित न करता, संपूर्ण संख्यांवर गणितीय क्रिया केल्या पाहिजेत. उदाहरणार्थ. 13 - 13 वरील गणितीय क्रिया जसे की 13 मध्ये 'गुणाकार करणे इत्यादी. बेरीज/वजाबाकी करणे. 13 1 आणि 3 मध्ये मोडणे. आणि नंतर 1 आणि 3 वर गणिती क्रिया करण्यास परवानगी नाही)

\(\left[\left(\frac{7}{9}\right),\left(\frac{31}{39}\right)\right], \left[\left(\frac{3}{5}\right),\left(\frac{15}{23}\right)\right]\)

This question was previously asked in
SSC CGL 2023 Tier-I Official Paper (Held On: 17 Jul 2023 Shift 3)
View all SSC CGL Papers >
  1. \(\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]\)
  2. \(\left[\left(\frac{9}{13}\right),\left(\frac{37}{55}\right)\right]\)
  3. \(\left[\left(\frac{9}{11}\right),\left(\frac{32}{37}\right)\right]\)
  4. \(\left[\left(\frac{17}{19}\right),\left(\frac{36}{77}\right)\right]\)

Answer (Detailed Solution Below)

Option 1 : \(\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]\)
super-pass-live
Free
SSC CGL Tier 1 2025 Full Test - 01
3.5 Lakh Users
100 Questions 200 Marks 60 Mins

Detailed Solution

Download Solution PDF

तर्क : \(\left[\left(\frac{(1st)Numerator \times 4+ 3}{(1st)Denominator \times 4 + 3 }\right)=\left(\frac{(2nd)Numerator }{(2nd)Denominator}\right)\right]\)

दिलेल्याप्रमाणे:

  • \(\left[\left(\frac{7}{9}\right),\left(\frac{31}{39}\right)\right]\)

\(\left[\left(\frac{7 \times 4+ 3}{9 \times 4 + 3 }\right)=\left(\frac{31}{39}\right)\right]\)

\(\left[\left(\frac{28+ 3}{36 + 3 }\right)=\left(\frac{31}{39}\right)\right]\)

\(\left[\left(\frac{31}{39 }\right)=\left(\frac{31}{39}\right)\right]\) (डाव्या हाताची बाजू = उजव्या हाताची बाजू)

30 = 30 (डाव्या हाताची बाजू = उजव्या हाताची बाजू)

  • \(\left[\left(\frac{3}{5}\right),\left(\frac{15}{23}\right)\right]\)

\(\left[\left(\frac{3 \times 4+ 3}{5 \times 4 + 3 }\right)=\left(\frac{15}{23}\right)\right]\)

\(\left[\left(\frac{12+ 3}{20 + 3 }\right)=\left(\frac{15}{23}\right)\right]\)

\(\left[\left(\frac{15}{23 }\right)=\left(\frac{15}{23}\right)\right]\) (डाव्या हाताची बाजू = उजव्या हाताची बाजू)

तर,

  • पर्याय - (1) : \(\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]\)

\(\left[\left(\frac{11 \times 4+ 3}{13 \times 4 + 3 }\right)=\left(\frac{47}{55}\right)\right]\)

\(\left[\left(\frac{44+ 3}{52 + 3 }\right)=\left(\frac{47}{55}\right)\right]\)

\(\left[\left(\frac{47}{55 }\right)=\left(\frac{47}{55}\right)\right]\) (डाव्या हाताची बाजू = उजव्या हाताची बाजू)

  • पर्याय - (2) : \(\left[\left(\frac{9}{13}\right),\left(\frac{37}{55}\right)\right]\)

\(\left[\left(\frac{9 \times 4+ 3}{13 \times 4 + 3 }\right)=\left(\frac{37}{55}\right)\right]\)

\(\left[\left(\frac{36+ 3}{52 + 3 }\right)=\left(\frac{37}{55}\right)\right]\)

\(\left[\left(\frac{39}{55 }\right)=\left(\frac{37}{55}\right)\right]\) (डाव्या हाताची बाजू ≠ उजव्या हाताची बाजू)

  • पर्याय - (३) : \(\left[\left(\frac{9}{11}\right),\left(\frac{32}{37}\right)\right]\)

\(\left[\left(\frac{9 \times 4+ 3}{11 \times 4 + 3 }\right)=\left(\frac{32}{37}\right)\right]\)

\(\left[\left(\frac{36+ 3}{44 + 3 }\right)=\left(\frac{32}{37}\right)\right]\)

\(\left[\left(\frac{39}{47}\right)=\left(\frac{32}{37}\right)\right]\) (डाव्या हाताची बाजू  उजव्या हाताची बाजू)

  • पर्याय - (4) : \(\left[\left(\frac{17}{19}\right),\left(\frac{36}{77}\right)\right]\)

\(\left[\left(\frac{17 \times 4+ 3}{19 \times 4 + 3 }\right)=\left(\frac{36}{77}\right)\right]\)

\(\left[\left(\frac{68+ 3}{76 + 3 }\right)=\left(\frac{36}{77}\right)\right]\)

\(\left[\left(\frac{71}{79}\right)=\left(\frac{36}{77}\right)\right]\)

म्हणून, "पर्याय - (1)" हे योग्य उत्तर आहे.

Latest SSC CGL Updates

Last updated on Jul 19, 2025

-> The SSC CGL Notification 2025 has been announced for 14,582 vacancies of various Group B and C posts across central government departments.

-> The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025 in multiple shifts.

->  Aspirants should visit the official website @ssc.gov.in 2025 regularly for CGL Exam updates and latest announcements.

-> Candidates had filled out the SSC CGL Application Form from 9 June to 5 July, 2025. Now, 20 lakh+ candidates will be writing the SSC CGL 2025 Exam on the scheduled exam date. Download SSC Calendar 2025-25!

-> In the SSC CGL 2025 Notification, vacancies for two new posts, namely, "Section Head" and "Office Superintendent" have been announced.

-> Candidates can refer to the CGL Syllabus for a better understanding of the exam structure and pattern.

-> The CGL Eligibility is a bachelor’s degree in any discipline, with the age limit varying from post to post. 

-> The SSC CGL Salary structure varies by post, with entry-level posts starting at Pay Level-4 (Rs. 25,500 to 81,100/-) and going up to Pay Level-7 (Rs. 44,900 to 1,42,400/-).

-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.

More Letter Based Questions

More Analogy Questions

Get Free Access Now
Hot Links: teen patti download teen patti casino download teen patti joy vip teen patti game online