Question
Download Solution PDFComprehension
Consider the function
\({\rm{f}}\left( {\rm{x}} \right) = \left| {\begin{array}{*{20}{c}} {{{\rm{x}}^3}}&{\sin {\rm{x}}}&{\cos {\rm{x}}}\\ 6&{ - 1}&0\\ {\rm{p}}&{{{\rm{p}}^2}}&{{{\rm{p}}^3}} \end{array}} \right|\), where p is a constant
What is the value of f’(0)?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFConcept:
Differentiation of the determinant of a matrix: Differentiate the first row (or column) and keep the entries of the other row untouched. Do this for all other rows (or columns). Then find the sum of all such determinants. Then you can get a determinant.
Calculation:
Given:
\({\rm{f}}\left( {\rm{x}} \right) = \left| {\begin{array}{*{20}{c}} {{{\rm{x}}^3}}&{\sin {\rm{x}}}&{\cos {\rm{x}}}\\ 6&{ - 1}&0\\ {\rm{p}}&{{{\rm{p}}^2}}&{{{\rm{p}}^3}} \end{array}} \right|\)
Differentiate with respect to x, we get
\( \Rightarrow {\rm{f'}}\left( {\rm{x}} \right) = \left| {\begin{array}{*{20}{c}} {\frac{{{\rm{d}}\left( {{{\rm{x}}^3}} \right)}}{{{\rm{dx}}}}}&{\frac{{{\rm{d}}(\sin {\rm{x}})}}{{{\rm{dx}}}}}&{\frac{{{\rm{d}}(\cos {\rm{x}})}}{{{\rm{dx}}}}}\\ 6&{ - 1}&0\\ {\rm{p}}&{{{\rm{p}}^2}}&{{{\rm{p}}^3}} \end{array}} \right| + {\rm{\;}}\left| {\begin{array}{*{20}{c}} {{{\rm{x}}^3}}&{\sin {\rm{x}}}&{\cos {\rm{x}}}\\ {\frac{{{\rm{d}}\left( 6 \right)}}{{{\rm{dx}}}}}&{\frac{{{\rm{d}}\left( { - 1} \right)}}{{{\rm{dx}}}}}&{\frac{{{\rm{d}}\left( 0 \right)}}{{{\rm{dx}}}}}\\ {\rm{p}}&{{{\rm{p}}^2}}&{{{\rm{p}}^3}} \end{array}} \right| + {\rm{\;}}\left| {\begin{array}{*{20}{c}} {{{\rm{x}}^3}}&{\sin {\rm{x}}}&{\cos {\rm{x}}}\\ 6&{ - 1}&0\\ {\frac{{{\rm{d}}\left( {\rm{p}} \right)}}{{{\rm{dx}}}}}&{\frac{{{\rm{d}}\left( {{{\rm{p}}^2}} \right)}}{{{\rm{dx}}}}}&{\frac{{{\rm{d}}\left( {{{\rm{p}}^3}} \right)}}{{{\rm{dx}}}}} \end{array}} \right|\)
\( \Rightarrow {\rm{f'}}\left( {\rm{x}} \right) = \left| {\begin{array}{*{20}{c}} {3{{\rm{x}}^2}}&{\cos {\rm{x}}}&{ - \sin {\rm{x}}}\\ 6&{ - 1}&0\\ {\rm{p}}&{{{\rm{p}}^2}}&{{{\rm{p}}^3}} \end{array}} \right| + 0 + 0 = \left| {\begin{array}{*{20}{c}} {3{{\rm{x}}^2}}&{\cos {\rm{x}}}&{ - \sin {\rm{x}}}\\ 6&{ - 1}&0\\ {\rm{p}}&{{{\rm{p}}^2}}&{{{\rm{p}}^3}} \end{array}} \right|\)
Put x = 0, we get
\( \Rightarrow {\rm{f'}}\left( 0 \right) = \left| {\begin{array}{*{20}{c}} 0&{\cos 0}&{ - \sin 0}\\ 6&{ - 1}&0\\ {\rm{p}}&{{{\rm{p}}^2}}&{{{\rm{p}}^3}} \end{array}} \right| = {\rm{\;}}\left| {\begin{array}{*{20}{c}} 0&1&0\\ 6&{ - 1}&0\\ {\rm{p}}&{{{\rm{p}}^2}}&{{{\rm{p}}^3}} \end{array}} \right|\)
⇒ f’(0) = 0 – 1(6p3 – 0) + 0
∴ f’(0) = - 6p3
Last updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.