Question
Download Solution PDFThe two random variable X and Y are uncorrelated if and only if their covariance is
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFTwo random variables are said to be uncorrelated if their covariance is zero.
Now,
\( {\rm{Cov}}\left( {{\rm{X}},{\rm{Y}}} \right) = {\rm{E}}\left[ {\left( {{\rm{X}} - {{\rm{\mu }}_{\rm{X}}}} \right)\left( {{\rm{Y}} - {{\rm{\mu }}_{\rm{Y}}}} \right)} \right]\)
where \({{\rm{\mu }}_{\rm{X}}} = {\rm{E}}\left( {\rm{X}} \right)\) and \({{\rm{\mu }}_{\rm{Y}}} = {\rm{E}}\left( {\rm{Y}} \right)\)
Thus, \({\rm{Cov}}\left( {{\rm{X}},{\rm{Y}}} \right) = {\rm{E}}\left[ {{\rm{XY}} - {{\rm{\mu }}_{\rm{X}}}{\rm{Y}}-{{\rm{\mu }}_{\rm{Y}}}{\rm{X}} + {{\rm{\mu }}_{\rm{X}}}{{\rm{\mu }}_{\rm{Y}}}} \right] \)
\(= {\rm{E}}\left[ {{\rm{XY}}} \right] - {\rm{E}}\left[ {{{\rm{\mu }}_{\rm{X}}}{\rm{Y}}} \right] - {\rm{E}}\left[ {{{\rm{\mu }}_{\rm{Y}}}{\rm{X}}} \right] + {\rm{E}}\left[ {{{\rm{\mu }}_{\rm{X}}}{{\rm{\mu }}_{\rm{Y}}}} \right]\)
Using, the property of expectation that \({\rm{E}}\left[ {{\rm{cY}}} \right] = {\rm{cE}}\left[ {\rm{Y}} \right]\) we have,
\(\begin{array}{l} {\rm{Cov}}\left( {{\rm{X}},{\rm{Y}}} \right) = {\rm{E}}\left( {{\rm{XY}}} \right)-{{\rm{\mu }}_{\rm{X}}}{{\rm{\mu }}_{\rm{Y}}}-{{\rm{\mu }}_{\rm{Y}}}{{\rm{\mu }}_{\rm{X}}} + {{\rm{\mu }}_{\rm{X}}}{{\rm{\mu }}_{\rm{Y}}}\\ {\rm{Cov}}\left( {{\rm{X}},{\rm{Y}}} \right) = {\rm{E}}\left( {{\rm{XY}}} \right)-{\rm{E}}\left( {\rm{X}} \right){\rm{E}}\left( {\rm{Y}} \right) \end{array}\)
For uncorrelated variables, \({\rm{Cov}}\left( {{\rm{X}},{\rm{Y}}} \right) = 0\)
Thus, for variables to be uncorrelated \({\rm{E}}\left( {{\rm{XY}}} \right) = {\rm{E}}\left( {\rm{X}} \right){\rm{E}}\left( {\rm{Y}} \right)\)Last updated on May 28, 2025
-> UPSC ESE admit card 2025 for the prelims exam has been released.
-> The UPSC IES Prelims 2025 will be held on 8th June 2025.
-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.
-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.