The volume of the solid surrounded by the surface \({\left( {\frac{x}{a}} \right)^{2/3}} + {\left( {\frac{y}{b}} \right)^{\frac{2}{3}}} + {\left( {\frac{z}{c}} \right)^{2/3}} = 1\) is

This question was previously asked in
ESE Electrical 2019 Official Paper
View all UPSC IES Papers >
  1. \(\frac{{4\pi abc}}{{35}}\)
  2. \(\frac{{abc}}{{35}}\)
  3. \(\frac{{2\pi \;abc}}{{35}}\)
  4. \(\frac{{\pi \;abc}}{{35}}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{{4\pi abc}}{{35}}\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.4 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

Concept:

Cartesian system (a, b, c) to spherical coordinate system (r, θ, ϕ) conversion.

a = r sin θ cos ϕ, b = r sin θ sin ϕ

c = r cos θ [note: a, b, c are generalised cartesian parameter different then given solid parameter]

da ⋅ db ⋅ dc = r2sin θ dr ⋅ dθ ⋅ dϕ

Calculation:

Given solid is \({\left( {\frac{x}{a}} \right)^{\frac{2}{3}}} + {\left( {\frac{y}{b}} \right)^{\frac{2}{3}}} + {\left( {\frac{z}{c}} \right)^{\frac{2}{3}}} = 1\)       ---(1)

Now, put x = au3, y = bv3 & z = cω3       ---(2)

⇒ dx = 3a42⋅d4, dy = 3bv2⋅dv & dz = 3cw2dw       ---(3)

Put equation (2) in equation (1), then we get

u2 + v2 + w2 = 1 (which is equation of sphere)

Since volume enclosed by solid can be calculate as,

Volume \(=\iiint{dx\cdot dy\cdot dz}\) ---(4)

So put equation (3) in equation (4), then we get

Volume \(=\iiint{\left( 27 \right)\left( abc \right)\left( {{u}^{2}}{{v}^{2}}{{w}^{2}} \right)du\cdot dv\cdot dw}\)       ---(5)

Now apply cartesion to spherical conversion in equation (5)

\(\left. \begin{matrix} u=r\sin \theta \cos \phi ,~v=r\sin \theta \sin \phi ~\And ~w=r\cos \theta \\ du\cdot dv\cdot dw={{r}^{2}}\cdot \sin \theta \cdot dr\cdot d\theta \cdot d\phi \\ \end{matrix} \right\}\)       ---(6)

Put equation (6) into equation (5) then we get

Volume \(=\left( 27~abc \right)\underset{r}{\overset{{}}{\mathop \int }}\,\underset{\theta }{\overset{{}}{\mathop \int }}\,\underset{\phi }{\overset{{}}{\mathop \int }}\,\left( {{r}^{2}}\cdot {{\sin }^{2}}\theta \cdot {{\cos }^{2}}\phi \right)\cdot ({{r}^{2}}{{\sin }^{2}}\theta {{\sin }^{2}}\phi )\cdot ({{r}^{2}}{{\cos }^{2}}\theta ){{r}^{2}}\sin \theta drd\theta d\phi\)

⇒ Volume \(\left( 27~abc \right)~\mathop{\int }_{r}^{{}}\mathop{\int }_{\theta }^{{}}\mathop{\int }_{\phi }^{{}}\left( {{r}^{8}} \right)\cdot \left( {{\sin }^{2}}\phi \cdot {{\cos }^{2}}\phi \right)\cdot \left( {{\sin }^{5}}\theta \cdot {{\cos }^{2}}\theta dr\cdot d\theta ~d\phi \right)\)

⇒ Volume \(=\left( 27~abc \right)\underset{r=0}{\overset{1}{\mathop \int }}\,{{r}^{8}}\cdot dr\underset{\theta =0}{\overset{\pi /2}{\mathop \int }}\,{{\sin }^{5}}\theta \cdot {{\cos }^{2}}\theta d\theta ~\underset{\phi =0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,{{\sin }^{2}}\phi \cdot {{\cos }^{2}}\phi d\phi\)

On solving above integrals we get.

⇒ Volume \(=\frac{4\pi ~abc}{35}\) unit cube
Latest UPSC IES Updates

Last updated on Jul 2, 2025

-> ESE Mains 2025 exam date has been released. As per the schedule, UPSC IES Mains exam 2025 will be conducted on August 10. 

-> UPSC ESE result 2025 has been released. Candidates can download the ESE prelims result PDF from here.

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

More Calculus Questions

Get Free Access Now
Hot Links: all teen patti game teen patti win teen patti app