Logical Connectives MCQ Quiz in বাংলা - Objective Question with Answer for Logical Connectives - বিনামূল্যে ডাউনলোড করুন [PDF]
Last updated on Mar 19, 2025
পাওয়া Logical Connectives उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Logical Connectives MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।
Latest Logical Connectives MCQ Objective Questions
Top Logical Connectives MCQ Objective Questions
Logical Connectives Question 1:
Consider the following TRUTH table:
Y |
Z |
Y □ Z |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
Y |
Z |
Y ⊗ Z |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
(p □ q) ∨ (p ⊗ q) ≡
Answer (Detailed Solution Below)
Option 1 : \(p \to \bar q\)
Logical Connectives Question 1 Detailed Solution
\(\begin{array}{l} p\; □ \;q \equiv \bar pq\\ p ⊗ q = \bar q\\ \therefore \bar pq + \bar q = \left( {\bar p + \bar q} \right)\left( {q + \bar q\;} \right) \equiv \bar p + \bar q\\ \equiv p \to \bar q \end{array}\)
Logical Connectives Question 2:
Diamonds and pearls are precious.
WFF for this statement is:
Given
D(x) : x is a diamond
P (x) : x is a pearl
T(x) : x is preciousAnswer (Detailed Solution Below)
Option 2 : \(\forall x\left[ {\left( {D\left( x \right) \vee P\left( x \right)} \right) \to T\left( x \right)} \right]\)
Logical Connectives Question 2 Detailed Solution
If x is either a diamond or a pearl then it’s is precious.
Logical Connectives Question 3:
Consider the following Truth Table
A |
B |
Y |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
Y =
Answer (Detailed Solution Below)
Option 2 : B
Logical Connectives Question 3 Detailed Solution
AB + B = (A + 1)B = B
Also Y = B
Logical Connectives Question 4:
A |
B |
F(A, B) |
F |
F |
T |
F |
T |
T |
T |
F |
F |
T |
T |
T |
From the given truth table F(A, B) is equivalent to:
Answer (Detailed Solution Below)
Option 1 : \(\bar B \to \bar A\)
Logical Connectives Question 4 Detailed Solution
\(F\left( {A,B} \right) \equiv A \to B \equiv \bar B \to \bar A\)