Chain Rule MCQ Quiz - Objective Question with Answer for Chain Rule - Download Free PDF
Last updated on Apr 11, 2025
Latest Chain Rule MCQ Objective Questions
Chain Rule Question 1:
Comprehension:
Direction : Consider the following for the items that follow :
Let f : (-1, 1) → R be a differentiable function with f(0) = -1 and f’(0) = 1 Let h(x) = f(2f(x) +2) and g(x) = (h(x))2.
What is g’(0) equal to?
Answer (Detailed Solution Below)
Chain Rule Question 1 Detailed Solution
Explanation:
Given:
f(0) = -1 and f'(0) = 1 Let h(x) = f(2f(x) +2) and g(x) = (h(x))2
⇒ g(x) = (h(x))2
⇒ g'(x) = 2(h(x)).h'(x)
⇒ g'(0) = 2(h(0)).h'(0)
= 2f(2f (0) + 2).2
= 2f(0).2 = (–2).2 = –4
∴ Option (a) is correct
Chain Rule Question 2:
Comprehension:
Direction : Consider the following for the items that follow :
Let f : (-1, 1) → R be a differentiable function with f(0) = -1 and f’(0) = 1 Let h(x) = f(2f(x) +2) and g(x) = (h(x))2.
What is h’(0) equal to?
Answer (Detailed Solution Below)
Chain Rule Question 2 Detailed Solution
Explanation:
Let f: (–1, 1)→ R be a differentiable function with f(0) = –1 and f'(0) = 1
⇒ h(x) = f(2f(x) + 2)
⇒ h'(x) = f'(2f(x) + 2)2f'(x)
⇒ h'(0) = f'(2f(0) + 2).2f'(0)
= f'(–2 + 2).2(1)
= f'(0).2 = (1).2 = 2
∴ Option (d) is correct.
Chain Rule Question 3:
Differentiate sin (x2 + 9) with respect to x.
Answer (Detailed Solution Below)
Chain Rule Question 3 Detailed Solution
Given:
Differentiate sin(x2 + 9) with respect to x.
Formula used:
Chain Rule: If y = sin(u) and u = x2 + 9, then dy/dx = cos(u) × du/dx
Calculation:
Let y = sin(x2 + 9)
⇒ dy/dx = cos(x2 + 9) × (d/dx)(x2 + 9)
⇒ dy/dx = cos(x2 + 9) × 2x
⇒ dy/dx = 2x cos(x2 + 9)
∴ The correct answer is option (4).
Chain Rule Question 4:
Differentiate sin (x2 + 9) with respect to x.
Answer (Detailed Solution Below)
Chain Rule Question 4 Detailed Solution
Given:
Differentiate sin(x2 + 9) with respect to x.
Formula used:
Chain Rule: If y = sin(u) and u = x2 + 9, then dy/dx = cos(u) × du/dx
Calculation:
Let y = sin(x2 + 9)
⇒ dy/dx = cos(x2 + 9) × (d/dx)(x2 + 9)
⇒ dy/dx = cos(x2 + 9) × 2x
⇒ dy/dx = 2x cos(x2 + 9)
∴ The correct answer is option (4).
Chain Rule Question 5:
\(y=\log \left (\tan \dfrac {x}{2}\right) + \sin^{-1}(\cos\,x)\), then \(\dfrac {dy}{dx}\) is
Answer (Detailed Solution Below)
Chain Rule Question 5 Detailed Solution
Top Chain Rule MCQ Objective Questions
If y = \(\rm e^{x+e^{x+e^{x+^{\ ...\ \infty}}}}\), then \(\rm \dfrac{dy}{dx}\) is:
Answer (Detailed Solution Below)
Chain Rule Question 6 Detailed Solution
Download Solution PDFConcept:
Chain Rule of Derivatives:
\(\rm \dfrac{d}{dx}f(g(x))=\dfrac{d}{d\ g(x)}f(g(x))\times \dfrac{d}{dx}g(x)\).
\(\rm \dfrac{d}{dx}e^x\) = ex.
Calculation:
It is given that y = \(\rm e^{x+e^{x+e^{x+^{\ ...\ \infty}}}}\).
∴ y = \(\rm e^{x+(e^{x+e^{x+^{\ ...\ \infty}}})}=e^{x+y}\)
Differentiating both sides with respect to x and using the chain rule, we get:
\(\rm \dfrac{dy}{dx}=\dfrac{d}{dx}e^{x+y}\)
⇒ \(\rm \dfrac{dy}{dx}=e^{x+y}\dfrac{d}{dx}(x+y)\)
⇒ \(\rm \dfrac{dy}{dx}=y\left (1+\dfrac{dy}{dx} \right )\)
⇒ \(\rm \dfrac{dy}{dx}=y+y\dfrac{dy}{dx}\)
⇒ \(\rm (1-y)\dfrac{dy}{dx}=y\)
⇒ \(\rm \dfrac{dy}{dx}=\dfrac{y}{1-y}\).
If f'(x) = g(x) and g'(x) = f(x2), then f"(x2) is equal to
Answer (Detailed Solution Below)
Chain Rule Question 7 Detailed Solution
Download Solution PDFf'(x) = g(x) and g’(x) = f(x2), then f’’(x2)
given f’(x) = g(x)
Differentiating w.r.t x we get
f’’(x) = g’(x)
f’’(x) = f(x2)
multiply the function with x2
f’’(x2) = f(x4)If y = sin (log cos x) then what is the value of \(\rm \frac{dy}{dx}\)
Answer (Detailed Solution Below)
Chain Rule Question 8 Detailed Solution
Download Solution PDFConcept:
Differentiation Formulas
\(\rm \frac{d\: (sin x)}{dx}\) = cos x
\(\rm \frac{d\: (log \: x)}{dx} = \frac{1}{x}\)
\(\rm \frac{d\: (cos\: x)}{dx} \) = - sin x
Trigonometry Formula
\(\rm tan\: \theta = \frac{sin \: \theta }{cos\: \theta }\)
Calculation:
Given:y = sin (log cos x)
Differentiation with respect to x
\(\rm \frac{dy}{dx}\) = \(\rm \frac{d\;\left \{sin\: (log (cos \:x )) \right \} }{dx}\)
= cos (log (cos x)). \(\rm \frac{d\;\left \{ (log (cos\: x )) \right \} }{dx}\)
= cos (log (cos x)). \(\rm \frac{1}{cos\: x}\) \(\)\(\frac{d\: (cos \:x)}{dx}\)
= cos (log (cos x)). \(\rm \frac{1}{cos\: x}\) .(- sin x)
= - cos (log (cos x)). \(\rm \frac{sin\: x }{cos\: x}\)
= - cos (log (cos x)).tan x
\(\rm \frac{dy}{dx}\) = - cos (log (cos x)).tan x
If \({\rm{s}} = \sqrt {{{\rm{t}}^2} + 1} \), then \(\frac{{{{\rm{d}}^2}{\rm{s}}}}{{{\rm{d}}{{\rm{t}}^2}}}\) is equal to
Answer (Detailed Solution Below)
Chain Rule Question 9 Detailed Solution
Download Solution PDFConcept:
\(\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}}} \right) = \frac{{{\rm{f'}}\left( {\rm{x}} \right){\rm{g}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{x}} \right){\rm{g'}}\left( {\rm{x}} \right)}}{{{{\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)}^2}}}\)
Calculation:
Given: \({\rm{s}} = \sqrt {{{\rm{t}}^2} + 1} \)
\(\frac{{{\rm{ds}}}}{{{\rm{dt}}}} = \frac{{{\rm{d}}\left( {\sqrt {{{\rm{t}}^2} + 1} } \right)}}{{{\rm{dt}}}}\)
\( = \frac{1}{{2\sqrt {{{\rm{t}}^2} + 1} }} \times \frac{{{\rm{d}}\left( {{{\rm{t}}^2} + 1} \right)}}{{{\rm{dt}}}}\)
\(= \frac{{2{\rm{t}}}}{{2\sqrt {{{\rm{t}}^2} + 1} }} = \frac{{\rm{t}}}{{\sqrt {{{\rm{t}}^2} + 1} }}\)
Now,
\(\frac{{{{\rm{d}}^2}{\rm{s}}}}{{{\rm{d}}{{\rm{t}}^2}}} = \frac{{\rm{d}}}{{{\rm{dt}}}}\left( {\frac{{{\rm{ds}}}}{{{\rm{dt}}}}} \right) = \frac{{\rm{d}}}{{{\rm{dt}}}}\left( {\frac{{\rm{t}}}{{\sqrt {{{\rm{t}}^2} + 1} }}} \right)\)
\(= \frac{{\sqrt {{{\rm{t}}^2} + 1} - \frac{{2{\rm{t}} \times {\rm{t}}}}{{2\sqrt {{{\rm{t}}^2} + 1} }}}}{{{{\left( {\sqrt {{{\rm{t}}^2} + 1} } \right)}^2}}}\)
\( = \frac{{\sqrt {{{\rm{t}}^2} + 1} - \frac{{{{\rm{t}}^2}}}{{\sqrt {{{\rm{t}}^2} + 1} }}}}{{{{\left( {\sqrt {{{\rm{t}}^2} + 1} } \right)}^2}}}\)
\( = \frac{{{{\rm{t}}^2} + 1 - {{\rm{t}}^2}}}{{{{\left( {\sqrt {{{\rm{t}}^2} + 1} } \right)}^3}}}\)
\( = \frac{1}{{{{\left( {\sqrt {{{\rm{t}}^2} + 1} } \right)}^3}}} = \frac{1}{{{{\rm{s}}^3}}}\)
Hence, option (3) is correct.
Find the value f'(x), if f(x) = \(\rm \sin^{-1}(1-x^2)\)
Answer (Detailed Solution Below)
Chain Rule Question 10 Detailed Solution
Download Solution PDFConcept:
\(\rm d\over dx\) sin-1 x = \(\rm 1\over\sqrt{1 - x^2}\)
\(\rm d\over dx\) tan-1 x = \(\rm 1\over1 + x^2\)
Chain Rule (Differentiation by substitution): If y is a function of u and u is a function of x
\(\rm {dy\over dx} = {dy\over du}× {du\over dx}\)
Calculation:
Let u = 1 - x2
\(\rm du \over dx\) = - 2x
y = sin-1(1 - x2) = sin-1 u
\(\rm dy\over dx\) = \(\rm {dy\over du}×{du\over dx}\)
\(\rm dy\over dx\) = \(\rm d\over du\) sin-1 u × (-2x)
\(\rm dy\over dx\) = \(\rm 1\over\sqrt{1 - u^2}\) × (-2x)
\(\rm dy\over dx\) = \(\rm -2x\over\sqrt{1 - (1-x^2)^2}\)
\(\rm dy\over dx\) = \(\rm -2x\over\sqrt{2x^2-x^4}\)
\(\rm dy\over dx\) = \(\boldsymbol{\rm -2\over\sqrt{2-x^2}}\)
Find \(\rm \frac{d}{dx} sin (e^{sin\: 3\sqrt{x}}) \) = ?
Answer (Detailed Solution Below)
Chain Rule Question 11 Detailed Solution
Download Solution PDFConcept:
Differentiation Formulas
\(\rm \frac{d\: (sin x)}{dx}\) = cos x
\(\rm \frac{d}{dx} (e^{x}) = e^{x} \)
\(\rm \frac{d}{dx} (x^{n}) = n x^{n - 1} \)
Calculation:
Given:
\(\rm \frac{d}{dx} sin (e^{sin\: 3\sqrt{x}}) \)
= \(\rm cos (e^{sin\: 3\sqrt{x}}) \) \(\rm \frac{d}{dx} (e^{sin\: 3\sqrt{x}}) \)
= \(\rm cos (e^{sin\: 3\sqrt{x}}) \) \(\rm (e^{sin\: 3\sqrt{x}}) \) \(\rm \frac{d}{dx} ({sin\: 3\sqrt{x}}) \)
= \(\rm cos (e^{sin\: 3\sqrt{x}}) \) \(\rm (e^{sin\: 3\sqrt{x}}) \) \(\rm \frac{d}{dx} ({sin\: 3\sqrt{x}}) \)
= \(\rm cos (e^{sin\: 3\sqrt{x}}) \) \(\rm e^{sin\: 3\sqrt{x}}\) \(\rm ({cos\: 3\sqrt{x}}) \) \(\rm \frac{d\: 3\sqrt{x}}{dx} \)
= \(\rm cos (e^{sin\: 3\sqrt{x}}) \)\(\rm e^{sin\: 3\sqrt{x}}\)\(\rm ({cos\: 3\sqrt{x}}) \) . 3 .\(\rm \frac{1}{2\sqrt{x}}\)
= \(\rm \frac{3 \: cos (e^{sin\: 3\sqrt{x}}) e^{sin\: 3\sqrt{x}} ({cos\: 3\sqrt{x}})}{2\sqrt{x}}\)
The derivative of \(\rm sin ^{-1}\dfrac{2x}{1+x^2}\) w.r.t \(\rm tan ^{-1}\dfrac{2x}{1-x^2}\) is equal to:
Answer (Detailed Solution Below)
Chain Rule Question 12 Detailed Solution
Download Solution PDFConcept:
\(\dfrac{\partial u}{\partial v} = \dfrac{\partial u}{\partial θ} \times \dfrac{\partial θ}{\partial v}\)
Given:
u = \(\rm sin ^{-1}\dfrac{2x}{1+x^2}\) And v = \(\rm tan ^{-1}\dfrac{2x}{1-x^2}\)
Calculation:
Let,
x = tan θ
Then,
u = \(\rm sin ^{-1}\dfrac{2 \tanθ}{1+\tan^2θ}\) = \(\rm \sin ^{-1}{(\sin2θ)}\)
u = 2θ
\(\dfrac{\partial u}{\partial θ} = \) 2
And,
v = \(\rm tan ^{-1}\dfrac{2x}{1-x^2}\) = \(\rm \tan ^{-1}\dfrac{2\tanθ}{1-\tan^2θ}\) = \(\rm tan ^{-1}{(\tan2θ)}\)
v = 2θ
\(\dfrac{\partial v}{\partial θ} = \) 2
After that,
\(\dfrac{\partial u}{\partial v} = \dfrac{\partial u}{\partial θ} \times \dfrac{\partial θ}{\partial v}\)
\(\dfrac{\partial u}{\partial v} = 2 \times \dfrac{1}{2}\)
= 1
Find the derivative of sin2(2x + 5) with respect to x ?
Answer (Detailed Solution Below)
Chain Rule Question 13 Detailed Solution
Download Solution PDFConcept:
Derivative of sinx with respect to x is cosx
Chain rule:
Let y = f(v) be a differentiable function of v and v = g(x) be a differentiable function of x then \(\frac{{dy}}{{dx}} = \frac{{dy}}{{dv}} ⋅ \frac{{dv}}{{dx}}\)
Calculation:
Given function is y = sin2(2x+5)
We differentiate the function with respect to x
⇒ y' = [sin2(2x+5)]'
As we know that, \(\frac{{dy}}{{dx}} = \frac{{dy}}{{dv}} ⋅ \frac{{dv}}{{dx}}\)
⇒ y' = 2 sin(2x+5) ⋅ [sin(2x+5)]'
⇒ y' = 2 sin(2x+5) ⋅ cos(2x+5) ⋅ (2x+5)'
⇒ y' = 2 sin(2x+5).cos(2x+5).(2)
⇒ y' = 2 sin[2(2x+5)] (∴ sin2x = 2sinx.cosx)
⇒ y' = 2 sin(4x+10)
Hence, option 4 is correct.
If log[log{log(x)}] = y, find \(\rm \frac{{dy}}{{dx}}\)
Answer (Detailed Solution Below)
Chain Rule Question 14 Detailed Solution
Download Solution PDFCalculation:
Given:
y = log[log{log(x)}]
DIfferentiation with respect to x
⇒ \(\rm \frac{{dy}}{{dx}} =\frac {d \;log[log{log(x)}] }{dx}\)
\(\rm =\frac {d \log[\log{\log(x)}] }{d\log{\log(x)}} \times \frac {d\log{\log(x)}}{dx}\)
\(\rm =\frac {d \log[\log{\log(x)}] }{d\log{\log(x)}} \times \frac {d\log{\log(x)}}{d\log x} \times \frac {d \log x}{dx}\)
\(\rm = \left( {\frac{1}{{\left[ {\log \left\{ {\log \left( x \right)} \right\}} \right]}}} \right) \times \;\left( {\frac{1}{{logx}}} \right) \times \left( {\frac{1}{x}} \right)\)
\(\rm \frac{{dy}}{{dx}}{\rm{\;}} = \left( {\frac{1}{{\left[ {\left( x \right)\left( {logx} \right)\log \left\{ {\log \left( x \right)} \right\}} \right]}}} \right)\)
If y = 2x + x log x, then find \(\rm \frac{dy}{dx}:\)
Answer (Detailed Solution Below)
Chain Rule Question 15 Detailed Solution
Download Solution PDFGiven:
y = 2x + x log x
Concept:
Use formula
\(\rm \frac{d}{dx}(a^x)=a^x\ loga\)
\(\rm \frac{d}{dx}[f(x)g(x)]=\frac{d}{dx}[f(x)]g(x)+f(x)\frac{d}{dx}[g(x)]\)
Calculation:
y = 2x + x log x
Differentiate with respect to x
\(\rm \frac{dy}{dx}=2^x\ log 2 + 1\cdot log x + x\cdot\frac{1}{x}\)
\(\rm \frac{dy}{dx}\)= 2x log 2 + log x + 1
Hence the option (4) is correct.