Chain Rule MCQ Quiz - Objective Question with Answer for Chain Rule - Download Free PDF

Last updated on Apr 11, 2025

Latest Chain Rule MCQ Objective Questions

Chain Rule Question 1:

Comprehension:

Direction : Consider the following for the items that follow :

Let f : (-1, 1) → R be a differentiable function with f(0) = -1 and f’(0) = 1 Let h(x) = f(2f(x) +2) and g(x) = (h(x))2

What is g’(0) equal to? 

  1. -4
  2. -2
  3. 0
  4. 4

Answer (Detailed Solution Below)

Option 1 : -4

Chain Rule Question 1 Detailed Solution

Explanation:

Given:

f(0) = -1 and f'(0) = 1 Let h(x) = f(2f(x) +2) and g(x) = (h(x))2 

⇒ g(x) = (h(x))2

⇒ g'(x) = 2(h(x)).h'(x)

⇒ g'(0) = 2(h(0)).h'(0)

= 2f(2f (0) + 2).2

= 2f(0).2 = (–2).2 = –4

∴ Option (a) is correct

Chain Rule Question 2:

Comprehension:

Direction : Consider the following for the items that follow :

Let f : (-1, 1) → R be a differentiable function with f(0) = -1 and f’(0) = 1 Let h(x) = f(2f(x) +2) and g(x) = (h(x))2

What is h’(0) equal to? 

  1. -2
  2. -1
  3. 0
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Chain Rule Question 2 Detailed Solution

Explanation:

Let f: (–1, 1)→ R be a differentiable function with f(0) = –1 and f'(0) = 1

⇒ h(x) = f(2f(x) + 2)

⇒ h'(x) = f'(2f(x) + 2)2f'(x)

⇒ h'(0) = f'(2f(0) + 2).2f'(0)

= f'(–2 + 2).2(1)

= f'(0).2 = (1).2 = 2

∴ Option (d) is correct.

Chain Rule Question 3:

Differentiate sin (x2 + 9) with respect to x.

  1. 2.cos (x2 + 9)
  2. 2x.sin (x2 + 9)
  3. 2cos (x + 9)
  4. 2x.cos (x2 + 9)
  5. 2cos (x + 7)

Answer (Detailed Solution Below)

Option 4 : 2x.cos (x2 + 9)

Chain Rule Question 3 Detailed Solution

Given:

Differentiate sin(x2 + 9) with respect to x.

Formula used:

Chain Rule: If y = sin(u) and u = x2 + 9, then dy/dx = cos(u) × du/dx

Calculation:

Let y = sin(x2 + 9)

⇒ dy/dx = cos(x2 + 9) × (d/dx)(x2 + 9)

⇒ dy/dx = cos(x2 + 9) × 2x

⇒ dy/dx = 2x cos(x2 + 9)

∴ The correct answer is option (4).

Chain Rule Question 4:

Differentiate sin (x2 + 9) with respect to x.

  1. 2.cos (x2 + 9)
  2. 2x.sin (x2 + 9)
  3. 2cos (x + 9)
  4. 2x.cos (x2 + 9)

Answer (Detailed Solution Below)

Option 4 : 2x.cos (x2 + 9)

Chain Rule Question 4 Detailed Solution

Given:

Differentiate sin(x2 + 9) with respect to x.

Formula used:

Chain Rule: If y = sin(u) and u = x2 + 9, then dy/dx = cos(u) × du/dx

Calculation:

Let y = sin(x2 + 9)

⇒ dy/dx = cos(x2 + 9) × (d/dx)(x2 + 9)

⇒ dy/dx = cos(x2 + 9) × 2x

⇒ dy/dx = 2x cos(x2 + 9)

∴ The correct answer is option (4).

Chain Rule Question 5:

\(y=\log \left (\tan \dfrac {x}{2}\right) + \sin^{-1}(\cos\,x)\), then \(\dfrac {dy}{dx}\) is

  1. \(\text{cosec }(x)-1\)
  2. \(\text{cosec }x\)
  3. \(\text{cosec }(x)+1\)
  4. \(x\)

Answer (Detailed Solution Below)

Option 1 : \(\text{cosec }(x)-1\)

Chain Rule Question 5 Detailed Solution

\(\displaystyle \frac{dy}{dx}=\frac{1}{\tan\dfrac x2}\sec^2\dfrac{x}{2}\cdot \frac{1}{2}+\frac{1}{\sqrt{1-\cos^2x}}(-\sin\,x)\)

\(\displaystyle =\frac{1}{2\sin\dfrac{x}{2}\cdot \cos\dfrac{x}{2}}-1\)

\(=\text{cosec}\,(x)-1\)

Top Chain Rule MCQ Objective Questions

If y = \(\rm e^{x+e^{x+e^{x+^{\ ...\ \infty}}}}\), then \(\rm \dfrac{dy}{dx}\) is:

  1. \(\rm \dfrac{1+y}{y}\)
  2. \(\rm \dfrac{y}{1+y}\)
  3. \(\rm \dfrac{y}{1-y}\)
  4. \(\rm \dfrac{1-y}{y}\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \dfrac{y}{1-y}\)

Chain Rule Question 6 Detailed Solution

Download Solution PDF

Concept:

Chain Rule of Derivatives: 

\(\rm \dfrac{d}{dx}f(g(x))=\dfrac{d}{d\ g(x)}f(g(x))\times \dfrac{d}{dx}g(x)\).

\(\rm \dfrac{d}{dx}e^x\) = ex.

Calculation:

It is given that y = \(\rm e^{x+e^{x+e^{x+^{\ ...\ \infty}}}}\).

∴ y = \(\rm e^{x+(e^{x+e^{x+^{\ ...\ \infty}}})}=e^{x+y}\)

Differentiating both sides with respect to x and using the chain rule, we get:

\(\rm \dfrac{dy}{dx}=\dfrac{d}{dx}e^{x+y}\)

⇒ \(\rm \dfrac{dy}{dx}=e^{x+y}\dfrac{d}{dx}(x+y)\)

⇒ \(\rm \dfrac{dy}{dx}=y\left (1+\dfrac{dy}{dx} \right )\)

⇒ \(\rm \dfrac{dy}{dx}=y+y\dfrac{dy}{dx}\)

⇒ \(\rm (1-y)\dfrac{dy}{dx}=y\)

⇒ \(\rm \dfrac{dy}{dx}=\dfrac{y}{1-y}\).

If f'(x) = g(x) and g'(x) = f(x2), then f"(x2) is equal to

  1. g(x2)
  2. f(x4)
  3. f(x3)
  4. g(x4)

Answer (Detailed Solution Below)

Option 2 : f(x4)

Chain Rule Question 7 Detailed Solution

Download Solution PDF

f'(x) = g(x) and g’(x) = f(x2), then f’’(x2)

given f’(x) = g(x)

Differentiating w.r.t x we get

f’’(x) = g’(x)

f’’(x) = f(x2)

multiply the function with x2

f’’(x2) = f(x4)

If y = sin (log cos x) then what is the value of \(\rm \frac{dy}{dx}\)

  1. cos (log (cos x)).tan x
  2. sin (log (cos x)).tan x
  3. -cos (log (cos x)).tan x
  4. -cos (log (sin x)).tan x

Answer (Detailed Solution Below)

Option 3 : -cos (log (cos x)).tan x

Chain Rule Question 8 Detailed Solution

Download Solution PDF

Concept:

Differentiation Formulas

\(\rm \frac{d\: (sin x)}{dx}\) = cos x 

\(\rm \frac{d\: (log \: x)}{dx} = \frac{1}{x}\)

\(\rm \frac{d\: (cos\: x)}{dx} \) = - sin x

Trigonometry Formula

\(\rm tan\: \theta = \frac{sin \: \theta }{cos\: \theta }\)

 

Calculation:

Given:y = sin (log cos x)

Differentiation with respect to x

\(\rm \frac{dy}{dx}\) = \(\rm \frac{d\;\left \{sin\: (log (cos \:x )) \right \} }{dx}\)

= cos (log (cos x)). \(\rm \frac{d\;\left \{ (log (cos\: x )) \right \} }{dx}\)

= cos (log (cos x)). \(\rm \frac{1}{cos\: x}\) \(\)\(\frac{d\: (cos \:x)}{dx}\)

= cos (log (cos x)). \(\rm \frac{1}{cos\: x}\) .(- sin x)

= - cos (log (cos x)). \(\rm \frac{sin\: x }{cos\: x}\)

= - cos (log (cos x)).tan x

\(\rm \frac{dy}{dx}\) = - cos (log (cos x)).tan x

If \({\rm{s}} = \sqrt {{{\rm{t}}^2} + 1} \), then \(\frac{{{{\rm{d}}^2}{\rm{s}}}}{{{\rm{d}}{{\rm{t}}^2}}}\) is equal to

  1. \(\frac{1}{{\rm{s}}}\)
  2. \(\frac{1}{{{{\rm{s}}^2}}}\)
  3. \(\frac{1}{{{{\rm{s}}^3}}}\)
  4. \(\frac{1}{{{{\rm{s}}^4}}}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{1}{{{{\rm{s}}^3}}}\)

Chain Rule Question 9 Detailed Solution

Download Solution PDF

Concept:

\(\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}}} \right) = \frac{{{\rm{f'}}\left( {\rm{x}} \right){\rm{g}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{x}} \right){\rm{g'}}\left( {\rm{x}} \right)}}{{{{\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)}^2}}}\)

Calculation:

Given: \({\rm{s}} = \sqrt {{{\rm{t}}^2} + 1} \)

\(\frac{{{\rm{ds}}}}{{{\rm{dt}}}} = \frac{{{\rm{d}}\left( {\sqrt {{{\rm{t}}^2} + 1} } \right)}}{{{\rm{dt}}}}\)

\( = \frac{1}{{2\sqrt {{{\rm{t}}^2} + 1} }} \times \frac{{{\rm{d}}\left( {{{\rm{t}}^2} + 1} \right)}}{{{\rm{dt}}}}\)

\(= \frac{{2{\rm{t}}}}{{2\sqrt {{{\rm{t}}^2} + 1} }} = \frac{{\rm{t}}}{{\sqrt {{{\rm{t}}^2} + 1} }}\)

Now,

\(\frac{{{{\rm{d}}^2}{\rm{s}}}}{{{\rm{d}}{{\rm{t}}^2}}} = \frac{{\rm{d}}}{{{\rm{dt}}}}\left( {\frac{{{\rm{ds}}}}{{{\rm{dt}}}}} \right) = \frac{{\rm{d}}}{{{\rm{dt}}}}\left( {\frac{{\rm{t}}}{{\sqrt {{{\rm{t}}^2} + 1} }}} \right)\)

\(= \frac{{\sqrt {{{\rm{t}}^2} + 1} - \frac{{2{\rm{t}} \times {\rm{t}}}}{{2\sqrt {{{\rm{t}}^2} + 1} }}}}{{{{\left( {\sqrt {{{\rm{t}}^2} + 1} } \right)}^2}}}\)

\( = \frac{{\sqrt {{{\rm{t}}^2} + 1} - \frac{{{{\rm{t}}^2}}}{{\sqrt {{{\rm{t}}^2} + 1} }}}}{{{{\left( {\sqrt {{{\rm{t}}^2} + 1} } \right)}^2}}}\)

\( = \frac{{{{\rm{t}}^2} + 1 - {{\rm{t}}^2}}}{{{{\left( {\sqrt {{{\rm{t}}^2} + 1} } \right)}^3}}}\)

\( = \frac{1}{{{{\left( {\sqrt {{{\rm{t}}^2} + 1} } \right)}^3}}} = \frac{1}{{{{\rm{s}}^3}}}\)

Hence, option (3) is correct.

Find the value f'(x), if f(x) = \(\rm \sin^{-1}(1-x^2)\)

  1. \(\rm 1\over\sqrt{1-x^2}\)
  2. \(\rm 2\over\sqrt{2-x^2}\)
  3. \(\rm -2\over\sqrt{2-x^2}\)
  4. \(\rm -1\over\sqrt{1-x^2}\)

Answer (Detailed Solution Below)

Option 3 : \(\rm -2\over\sqrt{2-x^2}\)

Chain Rule Question 10 Detailed Solution

Download Solution PDF

Concept:

\(\rm d\over dx\) sin-1 x = \(\rm 1\over\sqrt{1 - x^2}\)

\(\rm d\over dx\) tan-1 x = \(\rm 1\over1 + x^2\)

Chain Rule (Differentiation by substitution): If y is a function of u and u is a function of x

\(\rm {dy\over dx} = {dy\over du}× {du\over dx}\)

 

Calculation:

Let u = 1 - x2

\(\rm du \over dx\) = - 2x

y = sin-1(1 - x2) = sin-1 u

\(\rm dy\over dx\)\(\rm {dy\over du}×{du\over dx}\)            

\(\rm dy\over dx\)\(\rm d\over du\) sin-1 u × (-2x)

\(\rm dy\over dx\)\(\rm 1\over\sqrt{1 - u^2}\) × (-2x)

\(\rm dy\over dx\) = \(\rm -2x\over\sqrt{1 - (1-x^2)^2}\)

\(\rm dy\over dx\)\(\rm -2x\over\sqrt{2x^2-x^4}\)

\(\rm dy\over dx\)\(\boldsymbol{\rm -2\over\sqrt{2-x^2}}\)

Find \(\rm \frac{d}{dx} sin (e^{sin\: 3\sqrt{x}}) \) = ?

  1. \(\rm \frac{3 \: cos (e^{sin\: 3\sqrt{x}}) e^{cos\: 3\sqrt{x}} ({cos\: 3\sqrt{x}})}{2\sqrt{x}}\)
  2. \(\rm \frac{3 \: sin (e^{sin\: 3\sqrt{x}}) e^{sin\: 3\sqrt{x}} ({cos\: 3\sqrt{x}})}{2\sqrt{x}}\)
  3. \(\rm \frac{3 \: cos (e^{sin\: 3\sqrt{x}}) e^{sin\: 3\sqrt{x}} ({cos\: 3\sqrt{x}})}{2\sqrt{x}}\)
  4. \(\rm \frac{3 \: cos (e^{sin\: 3\sqrt{x}}) e^{sin\: 3\sqrt{x}} ({sin \: 3\sqrt{x}})}{2\sqrt{x}}\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \frac{3 \: cos (e^{sin\: 3\sqrt{x}}) e^{sin\: 3\sqrt{x}} ({cos\: 3\sqrt{x}})}{2\sqrt{x}}\)

Chain Rule Question 11 Detailed Solution

Download Solution PDF

Concept:

Differentiation Formulas

\(\rm \frac{d\: (sin x)}{dx}\) = cos x 

\(\rm \frac{d}{dx} (e^{x}) = e^{x} \)

\(\rm \frac{d}{dx} (x^{n}) = n x^{n - 1} \)

Calculation:

Given:

\(\rm \frac{d}{dx} sin (e^{sin\: 3\sqrt{x}}) \)

\(\rm cos (e^{sin\: 3\sqrt{x}}) \) \(\rm \frac{d}{dx} (e^{sin\: 3\sqrt{x}}) \)

=  \(\rm cos (e^{sin\: 3\sqrt{x}}) \) \(\rm (e^{sin\: 3\sqrt{x}}) \) \(\rm \frac{d}{dx} ({sin\: 3\sqrt{x}}) \)

=   \(\rm cos (e^{sin\: 3\sqrt{x}}) \) \(\rm (e^{sin\: 3\sqrt{x}}) \) \(\rm \frac{d}{dx} ({sin\: 3\sqrt{x}}) \)

=   \(\rm cos (e^{sin\: 3\sqrt{x}}) \) \(\rm e^{sin\: 3\sqrt{x}}\) \(\rm ({cos\: 3\sqrt{x}}) \) \(\rm \frac{d\: 3\sqrt{x}}{dx} \)

=  ​\(\rm cos (e^{sin\: 3\sqrt{x}}) \)\(\rm e^{sin\: 3\sqrt{x}}\)\(\rm ({cos\: 3\sqrt{x}}) \) . 3 .\(\rm \frac{1}{2\sqrt{x}}\)

\(\rm \frac{3 \: cos (e^{sin\: 3\sqrt{x}}) e^{sin\: 3\sqrt{x}} ({cos\: 3\sqrt{x}})}{2\sqrt{x}}\)

The derivative of \(\rm sin ^{-1}\dfrac{2x}{1+x^2}\) w.r.t \(\rm tan ^{-1}\dfrac{2x}{1-x^2}\) is equal to:

  1. \(\dfrac{2x}{1-x^2}\)
  2. 1
  3. 0
  4. \(\dfrac{x}{1-x}\)

Answer (Detailed Solution Below)

Option 2 : 1

Chain Rule Question 12 Detailed Solution

Download Solution PDF

Concept:

\(\dfrac{\partial u}{\partial v} = \dfrac{\partial u}{\partial θ} \times \dfrac{\partial θ}{\partial v}\)

Given:

u = \(\rm sin ^{-1}\dfrac{2x}{1+x^2}\)  And v = \(\rm tan ^{-1}\dfrac{2x}{1-x^2}\)

Calculation:

Let,

x = tan θ 

Then, 

u = \(\rm sin ^{-1}\dfrac{2 \tanθ}{1+\tan^2θ}\) = \(\rm \sin ^{-1}{(\sin2θ)}\)

u = 2θ 

\(\dfrac{\partial u}{\partial θ} = \) 2

And,

v = \(\rm tan ^{-1}\dfrac{2x}{1-x^2}\) = \(\rm \tan ^{-1}\dfrac{2\tanθ}{1-\tan^2θ}\) = \(\rm tan ^{-1}{(\tan2θ)}\)

v = 2θ 

\(\dfrac{\partial v}{\partial θ} = \) 2

After that,

\(\dfrac{\partial u}{\partial v} = \dfrac{\partial u}{\partial θ} \times \dfrac{\partial θ}{\partial v}\)

\(\dfrac{\partial u}{\partial v} = 2 \times \dfrac{1}{2}\)

= 1

Find the derivative of sin2(2x + 5) with respect to x ?

  1. 4 sin(2x + 5)
  2. 4 sin(4x + 10)
  3. 2 sin(2x + 5)
  4. 2 sin(4x + 10)

Answer (Detailed Solution Below)

Option 4 : 2 sin(4x + 10)

Chain Rule Question 13 Detailed Solution

Download Solution PDF

Concept:

Derivative of sinx with respect to x is cosx

Chain rule:

Let y = f(v) be a differentiable function of v and v = g(x) be a differentiable function of x then \(\frac{{dy}}{{dx}} = \frac{{dy}}{{dv}} ⋅ \frac{{dv}}{{dx}}\)

Calculation:

Given function is  y = sin2(2x+5)

We differentiate the function with respect to x

⇒  y' = [sin2(2x+5)]' 

As we know that, \(\frac{{dy}}{{dx}} = \frac{{dy}}{{dv}} ⋅ \frac{{dv}}{{dx}}\)

⇒ y' = 2 sin(2x+5) ⋅ [sin(2x+5)]'

⇒  y' = 2 sin(2x+5) ⋅ cos(2x+5) ⋅ (2x+5)'

⇒ y' = 2 sin(2x+5).cos(2x+5).(2)

⇒ y' = 2 sin[2(2x+5)]                      (∴ sin2x = 2sinx.cosx)

⇒ y' = 2 sin(4x+10)

Hence, option 4 is correct.

If log[log{log(x)}] = y, find \(\rm \frac{{dy}}{{dx}}\)

  1. \(\rm \frac{{dy}}{{dx}}{\rm{\;}} = \left( {\frac{1}{{\left[ {\left( {logx} \right)\log \left\{ {\log \left( x \right)} \right\}} \right]}}} \right)\)
  2. \(\rm \frac{{dy}}{{dx}}{\rm{\;}} = \left( {\frac{1}{{\left[ {\left( x \right)\left( {logx} \right)\log \left\{ {\log \left( x \right)} \right\}} \right]}}} \right)\)
  3. \(\rm \frac{{dy}}{{dx}}{\rm{\;}} = \left( {\frac{1}{{\left[ {x\log \left\{ {\log \left( x \right)} \right\}} \right]}}} \right)\)
  4. None of these

Answer (Detailed Solution Below)

Option 2 : \(\rm \frac{{dy}}{{dx}}{\rm{\;}} = \left( {\frac{1}{{\left[ {\left( x \right)\left( {logx} \right)\log \left\{ {\log \left( x \right)} \right\}} \right]}}} \right)\)

Chain Rule Question 14 Detailed Solution

Download Solution PDF

Calculation:

Given:

y = log[log{log(x)}] 

DIfferentiation with respect to x

⇒ \(\rm \frac{{dy}}{{dx}} =\frac {d \;log[log{log(x)}] }{dx}\)     

\(\rm =\frac {d \log[\log{\log(x)}] }{d\log{\log(x)}} \times \frac {d\log{\log(x)}}{dx}\)

\(\rm =\frac {d \log[\log{\log(x)}] }{d\log{\log(x)}} \times \frac {d\log{\log(x)}}{d\log x} \times \frac {d \log x}{dx}\)

\(\rm = \left( {\frac{1}{{\left[ {\log \left\{ {\log \left( x \right)} \right\}} \right]}}} \right) \times \;\left( {\frac{1}{{logx}}} \right) \times \left( {\frac{1}{x}} \right)\) 

\(\rm \frac{{dy}}{{dx}}{\rm{\;}} = \left( {\frac{1}{{\left[ {\left( x \right)\left( {logx} \right)\log \left\{ {\log \left( x \right)} \right\}} \right]}}} \right)\)

If y = 2x + x log x, then find \(\rm \frac{dy}{dx}:\)

  1. 2x log 2 - log x - 1
  2. 2x log 2 - log x + 1
  3. 2x log 2 + log x - 1
  4. 2x log 2 + log x + 1

Answer (Detailed Solution Below)

Option 4 : 2x log 2 + log x + 1

Chain Rule Question 15 Detailed Solution

Download Solution PDF

Given:

 y = 2x + x log x

Concept:

Use formula

\(\rm \frac{d}{dx}(a^x)=a^x\ loga\)

\(\rm \frac{d}{dx}[f(x)g(x)]=\frac{d}{dx}[f(x)]g(x)+f(x)\frac{d}{dx}[g(x)]\)

Calculation:

 y = 2x + x log x

Differentiate with respect to x

\(\rm \frac{dy}{dx}=2^x\ log 2 + 1\cdot log x + x\cdot\frac{1}{x}\)

\(\rm \frac{dy}{dx}\)= 2x log 2 + log x + 1

Hence the option (4) is correct.

Get Free Access Now
Hot Links: teen patti gold apk teen patti apk download teen patti - 3patti cards game teen patti master apk best