De Moivre's Theorem MCQ Quiz - Objective Question with Answer for De Moivre's Theorem - Download Free PDF

Last updated on Apr 23, 2025

Latest De Moivre's Theorem MCQ Objective Questions

De Moivre's Theorem Question 1:

If  are respectively the least positive and greatest negative integer values of  such that  then 

Answer (Detailed Solution Below) 4

De Moivre's Theorem Question 1 Detailed Solution

Calculation

Using De Moivre's Theorem:

Comparing with -i, we have:

This implies:

⇒ 

⇒ 

⇒ 

⇒ 

For the least positive integer value of k, let n = 0:

Let n = 1:

Let n = 2:

So, m = 3.

For the greatest negative integer value of k, we can analyze the values of k for negative n.

For n = -1:

So, n = -1.

De Moivre's Theorem Question 2:

The real part of  is:

Answer (Detailed Solution Below)

Option 4 :

De Moivre's Theorem Question 2 Detailed Solution

Formula Used:

1. Euler's formula:

2. De Moivre's theorem:

3. and

Calculation:

 

(Since )

⇒ Real part =

∴ The real part of the given expression is .

Hence option 4 is correct

De Moivre's Theorem Question 3:

If  are respectively the least positive and greatest negative integer values of  such that  then 

  1. 4
  2. 0
  3. 6
  4. 2

Answer (Detailed Solution Below)

Option 1 : 4

De Moivre's Theorem Question 3 Detailed Solution

Calculation

Using De Moivre's Theorem:

Comparing with -i, we have:

This implies:

⇒ 

⇒ 

⇒ 

⇒ 

For the least positive integer value of k, let n = 0:

Let n = 1:

Let n = 2:

So, m = 3.

For the greatest negative integer value of k, we can analyze the values of k for negative n.

For n = -1:

So, n = -1.

Hence option 1 is correct

De Moivre's Theorem Question 4:

One of the roots of the equation  is 

Answer (Detailed Solution Below)

Option 4 :

De Moivre's Theorem Question 4 Detailed Solution

Concept Used:

Factoring the equation and expressing roots in cis form. Using De Moivre's Theorem.

cis(θ) = cos(θ) + i sin(θ)

Calculation

⇒ 

⇒ 

Thus, or

Let's analyze the options:

Option 1:

Option 3:

Option 4:

Option 2:

Since option 4 satisfies , it is a root of the equation.

∴ The root is

Hence option 4 is correct

De Moivre's Theorem Question 5:

x and y are two complex numbers such that |x| = |y| = 1. If Arg(x) = 2α, Arg(y) = 3β and α + β = , then x6y4 + =

  1. 0
  2. -1
  3. 1

Answer (Detailed Solution Below)

Option 3 : 1

De Moivre's Theorem Question 5 Detailed Solution

Concept Used:

Complex numbers in polar form: z = |z|(cos(θ) + i sin(θ))

De Moivre's Theorem: (cos(θ) + i sin(θ))^n = cos(nθ) + i sin(nθ)

Calculation

Given:

|x| = |y| = 1

Arg(x) = 2α

Arg(y) = 3β

α + β = π/36

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

⇒  

Hence option 3 is correct

Top De Moivre's Theorem MCQ Objective Questions

The value of  is:

  1. 1
  2. cos 2θ - i sin 2θ
  3. cos 2θ + i sin 2θ
  4. None of these.

Answer (Detailed Solution Below)

Option 3 : cos 2θ + i sin 2θ

De Moivre's Theorem Question 6 Detailed Solution

Download Solution PDF

Concept:

Euler's formula:

A complex number z = cos θ + i sin θ can also be written as e.

Calculation:

From the Euler's formula, we know that:

 = e2iθ = cos 2θ + i sin 2θ.

What is  where  equal to?

  1. 1
  2. i
  3. -1
  4. -i

Answer (Detailed Solution Below)

Option 2 : i

De Moivre's Theorem Question 7 Detailed Solution

Download Solution PDF

Concept:

1. Euler's Formula on Complex Numbers:

  • eix = cos x + i sin x
  • e-ix = cos x - i sin x


2. Trigonometry formulas:

  • 1 – cos θ = 2 sin2 (θ/2)
  • sin θ = 2 sin (θ/2) cos (θ/2


Calculation:

We have to find the value of 

                          (∵eix = cos x + i sin x and e-ix = cos x - i sin x)

             

= cos (π/2) + i sin (π/2) = 0 + i  = i

If x = (cos π/14 + i sin π/14), y = (cos 9π/14 + i sin 9π/14) then find the value of x5 ⋅ y15 ?

  1. ei ⋅ 5π
  2. ei ⋅ 15π
  3. ei ⋅ 10π
  4. None of these

Answer (Detailed Solution Below)

Option 3 : ei ⋅ 10π

De Moivre's Theorem Question 8 Detailed Solution

Download Solution PDF

Concept:

Calculation:

Given: 

x = (cos π/14 + i sin π/14), y = (cos 9π/14 + i sin 9π/14)

As we know that, 

 

We can re-write x and y as:

⇒ x = ei ⋅ π/14 and y = ei ⋅ 9π/14

⇒ x5 = ei ⋅ 5π/14 and y15 = ei ⋅ 135π/14

⇒  x5 ⋅ y15 = ei ⋅ 10π 

If x =  (cos π/9 + i sin π/9 )18 and y = (cos π/16 + i sin π/16 )8 then find the value of x. y-2 ?

  1. 1
  2. 0
  3. 1/2
  4. - 1

Answer (Detailed Solution Below)

Option 4 : - 1

De Moivre's Theorem Question 9 Detailed Solution

Download Solution PDF

Concept:

Calculation:

Given: x =  (cos π/9 + i sin π/9 )18 and y = (cos π/16 + i sin π/16 )8

As we know that, 

⇒ y = (cos π/16 + i sin π/16 )8 = [ei ⋅ π/16]8 = ei ⋅ π/2

⇒ ei ⋅ π/2 = cos π/2 + i sin π/2 = i

⇒ y = i 

So, y-2 = i-2- 1  ----(1)

Similarly, 

As we know that, 

⇒ x = (cos π/9 + i sin π/9 )18 = [ei ⋅ π/9]18 = ei ⋅ 2π

⇒ ei ⋅ 2π = cos 2π + i sin 2π = 1

⇒ x = 1     -------(2)

So, from (1) and (2), we get

⇒ x ⋅ y-2 = 1 × - 1 = - 1

Evaluate (cos π/9 + i sin π/9 )18 = ?

  1. 0
  2. 1
  3. 1/2
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 1

De Moivre's Theorem Question 10 Detailed Solution

Download Solution PDF

Concept:

Calculation:

As we know that, 

⇒ (cos π/9 + i sin π/9 )18 

= [ei ⋅ π/9]18 = ei ⋅ 2π

⇒ ei ⋅ 2π 

= cos 2π + i sin 2π = 1

Evaluate (cos π/16 + i sin π/16 )8 = ?

  1. 0
  2. 1
  3. i
  4. - i

Answer (Detailed Solution Below)

Option 3 : i

De Moivre's Theorem Question 11 Detailed Solution

Download Solution PDF

Concept:

Calculation:

As we know that, 

⇒ (cos π/16 + i sin π/16 )8 = [ei ⋅ π/16]8 = ei ⋅ π/2

⇒ ei ⋅ π/2 = cos π/2 + i sin π/2 = i

Let z be a complex number such that |z| = 4 and arg . What is z equal to?

Answer (Detailed Solution Below)

Option 3 :

De Moivre's Theorem Question 12 Detailed Solution

Download Solution PDF

Concept:

Relation between modulus and argument of a complex number:

For any complex number  if the modulus is given by  and argument is then the following relation always holds:

Calculation:

Let the given complex number be  then we have  and arg 

Therefore, .

Now using the above formulae,

Therefore, the required complex number is .

Answer (Detailed Solution Below)

Option 1 :

De Moivre's Theorem Question 13 Detailed Solution

Download Solution PDF

Concept:

Let z = x + iy be any complex number then its polar form is , where r =  and 

De Moivre’s Theorem 

Given any complex number cos θ + i sin θ and any integer n,

(cos θ + i sin θ )n = cos nθ + i sin nθ 

 

Calculations:

To Find 

First write the complex numbers  and  in polar form and apply De - Moivers theorem.

Let z = x + iy be any complex number then its polar form is  , where r =  and 

The polar form of  is 

The polar form of  is 

Consider, 

 =  + 

Apply De Moivre’s Theorem 

Given any complex number cos θ + i sin θ and any integer n,

(cos θ + i sin θ )n = cos nθ + i sin nθ .

 + 

Hence, 

Evaluate the expression 

  1. ei ⋅ 16π
  2. - ei ⋅ π/16
  3. ei ⋅ 8π
  4. - ei ⋅ π/8

Answer (Detailed Solution Below)

Option 1 : ei ⋅ 16π

De Moivre's Theorem Question 14 Detailed Solution

Download Solution PDF

Concept:

Calculation:

The given expression: can re-written as

 =  

 = 

As we know that sin π/4 = 1/√2 = cos π/4

So, we can write the given expression as

 = (cos π/4 + i sin π/4)64

As we know that, 

⇒ (cos π/4 + i sin π/4)64 = (ei ⋅ π/4 )64

⇒ (cos π/4 + i sin π/4)64 = ei ⋅ 16π

If , then 

  1. Re (z) = 0
  2. Im (z) = 0
  3. Re (z) > 0, Im(z) > 0 
  4. Re (z) > 0, Im (z) < 0

Answer (Detailed Solution Below)

Option 2 : Im (z) = 0

De Moivre's Theorem Question 15 Detailed Solution

Download Solution PDF

Concept:

De Moivre's formula:

If z = re = r(cos θ + i sin θ) , then znrneinθ(cos nθ + i sin nθ)

Calculation:

Given, z = 

⇒ z = 

⇒ z = 

⇒ z = 

⇒ z = 

⇒ z = 

⇒ z = 

⇒ z = 

⇒ z = 2 cos  = √3

∴ Im (z) = 0

Hot Links: teen patti diya teen patti master 2023 teen patti club apk