De Moivre's Theorem MCQ Quiz - Objective Question with Answer for De Moivre's Theorem - Download Free PDF
Last updated on Apr 23, 2025
Latest De Moivre's Theorem MCQ Objective Questions
De Moivre's Theorem Question 1:
If \(m, n\) are respectively the least positive and greatest negative integer values of \(k\) such that \(\left(\frac{1 - i}{1 + i}\right)^k = -i, \) then \(m - n =\)
Answer (Detailed Solution Below) 4
De Moivre's Theorem Question 1 Detailed Solution
Calculation
\(\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} = \frac{1 - 2i + i^2}{1 - i^2} = \frac{1 - 2i - 1}{1 - (-1)} = \frac{-2i}{2} = -i\)
\((-i)^k = -i\)
\(-i = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\)
Using De Moivre's Theorem:
\((-i)^k = \cos\left(\frac{3k\pi}{2}\right) + i\sin\left(\frac{3k\pi}{2}\right)\)
Comparing with -i, we have:
\(\cos\left(\frac{3k\pi}{2}\right) = 0\) and \(\sin\left(\frac{3k\pi}{2}\right) = -1\)
This implies:
\(\frac{3k\pi}{2} = (2n+1)\pi - \frac{\pi}{2}\)
⇒ \(\frac{3k}{2} = 2n + 1 - \frac{1}{2}\)
⇒ \(\frac{3k}{2} = \frac{4n+1}{2}\)
⇒ \(3k = 4n + 1\)
⇒ \(k = \frac{4n+1}{3}\)
For the least positive integer value of k, let n = 0:
\(k = \frac{1}{3}\)
Let n = 1:
\(k = \frac{5}{3}\)
Let n = 2:
\(k = \frac{9}{3} = 3\)
So, m = 3.
For the greatest negative integer value of k, we can analyze the values of k for negative n.
For n = -1:
\(k = \frac{-3}{3} = -1\)
So, n = -1.
\(m - n = 3 - (-1) = 3 + 1 = 4\)
De Moivre's Theorem Question 2:
The real part of \( \frac{(\cos a + i \sin a)^6}{(\sin b + i \cos b)^8} \) is:
Answer (Detailed Solution Below)
De Moivre's Theorem Question 2 Detailed Solution
Formula Used:
1. Euler's formula: \(e^{i\theta} = \cos \theta + i \sin \theta\)
2. De Moivre's theorem: \((\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta\)
3. \(\sin \theta = \cos(\frac{\pi}{2} - \theta)\) and \(\cos \theta = \sin(\frac{\pi}{2} - \theta)\)
Calculation:
\(\frac{(\cos a + i \sin a)^6}{(\sin b + i \cos b)^8} = \frac{(e^{ia})^6}{(\cos(\frac{\pi}{2}-b) + i \sin(\frac{\pi}{2}-b))^8}\)
⇒ \(= \frac{e^{i6a}}{(e^{i(\frac{\pi}{2}-b)})^8}\)
⇒ \(= \frac{e^{i6a}}{e^{i(4\pi - 8b)}}\)
⇒ \(= e^{i(6a - 4\pi + 8b)}\)
⇒ \(= e^{i(6a + 8b)}\) (Since \(e^{i(-4\pi)} = \cos(-4\pi) + i\sin(-4\pi) = 1\))
⇒ \(= \cos(6a + 8b) + i \sin(6a + 8b)\)
⇒ Real part = \(\cos(6a + 8b)\)
∴ The real part of the given expression is \(\cos(6a + 8b)\).
Hence option 4 is correct
De Moivre's Theorem Question 3:
If \(m, n\) are respectively the least positive and greatest negative integer values of \(k\) such that \(\left(\frac{1 - i}{1 + i}\right)^k = -i, \) then \(m - n =\)
Answer (Detailed Solution Below)
De Moivre's Theorem Question 3 Detailed Solution
Calculation
\(\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} = \frac{1 - 2i + i^2}{1 - i^2} = \frac{1 - 2i - 1}{1 - (-1)} = \frac{-2i}{2} = -i\)
\((-i)^k = -i\)
\(-i = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\)
Using De Moivre's Theorem:
\((-i)^k = \cos\left(\frac{3k\pi}{2}\right) + i\sin\left(\frac{3k\pi}{2}\right)\)
Comparing with -i, we have:
\(\cos\left(\frac{3k\pi}{2}\right) = 0\) and \(\sin\left(\frac{3k\pi}{2}\right) = -1\)
This implies:
\(\frac{3k\pi}{2} = (2n+1)\pi - \frac{\pi}{2}\)
⇒ \(\frac{3k}{2} = 2n + 1 - \frac{1}{2}\)
⇒ \(\frac{3k}{2} = \frac{4n+1}{2}\)
⇒ \(3k = 4n + 1\)
⇒ \(k = \frac{4n+1}{3}\)
For the least positive integer value of k, let n = 0:
\(k = \frac{1}{3}\)
Let n = 1:
\(k = \frac{5}{3}\)
Let n = 2:
\(k = \frac{9}{3} = 3\)
So, m = 3.
For the greatest negative integer value of k, we can analyze the values of k for negative n.
For n = -1:
\(k = \frac{-3}{3} = -1\)
So, n = -1.
\(m - n = 3 - (-1) = 3 + 1 = 4\)
Hence option 1 is correct
De Moivre's Theorem Question 4:
One of the roots of the equation \(x^{14} + x^9 - x^5 - 1 = 0\) is
Answer (Detailed Solution Below)
De Moivre's Theorem Question 4 Detailed Solution
Concept Used:
Factoring the equation and expressing roots in cis form. Using De Moivre's Theorem.
cis(θ) = cos(θ) + i sin(θ)
Calculation
\(x^{14} + x^9 - x^5 - 1 = 0\)
⇒ \(x^9(x^5 + 1) - 1(x^5 + 1) = 0\)
⇒ \((x^9 - 1)(x^5 + 1) = 0\)
Thus, \(x^9 = 1\) or \(x^5 = -1\)
Let's analyze the options:
Option 1: \(\frac{1 + \sqrt{3}i}{2} = \text{cis}(\frac{\pi}{3})\)
\(x^5 = \text{cis}(\frac{5\pi}{3}) = \cos(\frac{5\pi}{3}) + i\sin(\frac{5\pi}{3}) = \frac{1}{2} - i\frac{\sqrt{3}}{2} \ne -1\)
Option 3: \(\frac{1 - \sqrt{3}i}{2} = \text{cis}(-\frac{\pi}{3})\)
\(x^5 = \text{cis}(-\frac{5\pi}{3}) = \cos(-\frac{5\pi}{3}) + i\sin(-\frac{5\pi}{3}) = \frac{1}{2} + i\frac{\sqrt{3}}{2} \ne -1\)
Option 4: \(\frac{\sqrt{5}+1}{4} + i\frac{\sqrt{10-2\sqrt{5}}}{4} = \text{cis}(\frac{\pi}{5})\)
\(x^5 = \text{cis}(\pi) = \cos(\pi) + i\sin(\pi) = -1\)
Option 2: \(\frac{\sqrt{5}-1}{4} + i\frac{\sqrt{10+2\sqrt{5}}}{4} = \text{cis}(\frac{2\pi}{5})\)
\(x^5 = \text{cis}(2\pi) = \cos(2\pi) + i\sin(2\pi) = 1 \ne -1\)
Since option 4 satisfies \(x^5 = -1\), it is a root of the equation.
∴ The root is \(\frac{\sqrt{5}+1}{4} + i\frac{\sqrt{10-2\sqrt{5}}}{4}\)
Hence option 4 is correct
De Moivre's Theorem Question 5:
x and y are two complex numbers such that |x| = |y| = 1. If Arg(x) = 2α, Arg(y) = 3β and α + β = \(\frac{π}{36}\), then x6y4 + \(\frac{1}{(x^6y^4)}\) =
Answer (Detailed Solution Below)
De Moivre's Theorem Question 5 Detailed Solution
Concept Used:
Complex numbers in polar form: z = |z|(cos(θ) + i sin(θ))
De Moivre's Theorem: (cos(θ) + i sin(θ))^n = cos(nθ) + i sin(nθ)
Calculation
Given:
|x| = |y| = 1
Arg(x) = 2α
Arg(y) = 3β
α + β = π/36
\(x = \cos(2\alpha) + i \sin(2\alpha)\)
\(y = \cos(3\beta) + i \sin(3\beta)\)
\(x^6y^4 = (\cos(2\alpha) + i \sin(2\alpha))^6 (\cos(3\beta) + i \sin(3\beta))^4\)
⇒ \(x^6y^4 = (\cos(12\alpha) + i \sin(12\alpha)) (\cos(12\beta) + i \sin(12\beta))\)
⇒ \(x^6y^4 = \cos(12\alpha + 12\beta) + i \sin(12\alpha + 12\beta)\)
⇒ \(x^6y^4 = \cos(12(\alpha + \beta)) + i \sin(12(\alpha + \beta))\)
⇒ \(x^6y^4 = \cos(12 \times \frac{\pi}{36}) + i \sin(12 \times \frac{\pi}{36})\)
⇒ \(x^6y^4 = \cos(\frac{\pi}{3}) + i \sin(\frac{\pi}{3})\)
⇒ \(x^6y^4 = \frac{1}{2} + i\frac{\sqrt{3}}{2}\)
\(\frac{1}{x^6y^4} = \frac{1}{\frac{1}{2} + i\frac{\sqrt{3}}{2}}\)
⇒ \(\frac{1}{x^6y^4} = \frac{\frac{1}{2} - i\frac{\sqrt{3}}{2}}{(\frac{1}{2} + i\frac{\sqrt{3}}{2})(\frac{1}{2} - i\frac{\sqrt{3}}{2})}\)
⇒ \(\frac{1}{x^6y^4} = \frac{\frac{1}{2} - i\frac{\sqrt{3}}{2}}{\frac{1}{4} + \frac{3}{4}}\)
⇒ \(\frac{1}{x^6y^4} = \frac{1}{2} - i\frac{\sqrt{3}}{2}\)
\(x^6y^4 + \frac{1}{x^6y^4} = (\frac{1}{2} + i\frac{\sqrt{3}}{2}) + (\frac{1}{2} - i\frac{\sqrt{3}}{2})\)
⇒ \(x^6y^4 + \frac{1}{x^6y^4} = 1\)
Hence option 3 is correct
Top De Moivre's Theorem MCQ Objective Questions
The value of \(\rm \frac{\cos\theta+i\sin\theta}{\cos\theta-i\sin\theta}\) is:
Answer (Detailed Solution Below)
De Moivre's Theorem Question 6 Detailed Solution
Download Solution PDFConcept:
Euler's formula:
A complex number z = cos θ + i sin θ can also be written as eiθ.
Calculation:
From the Euler's formula, we know that:
\(\rm \frac{\cos\theta+i\sin\theta}{\cos\theta-i\sin\theta}=\frac{e^{i\theta}}{e^{-i\theta}}\) = e2iθ = cos 2θ + i sin 2θ.
What is \({\left[ {\frac{{\sin \frac{{\rm{\pi }}}{6} + {\rm{i}}\left( {1 - \cos \frac{{\rm{\pi }}}{6}} \right)}}{{\sin \frac{{\rm{\pi }}}{6} - {\rm{i}}\left( {1 - \cos \frac{{\rm{\pi }}}{6}} \right)}}} \right]^3}\) where \({\rm{i}} = \sqrt { - 1} ,\) equal to?
Answer (Detailed Solution Below)
De Moivre's Theorem Question 7 Detailed Solution
Download Solution PDFConcept:
1. Euler's Formula on Complex Numbers:
- eix = cos x + i sin x
- e-ix = cos x - i sin x
2. Trigonometry formulas:
- 1 – cos θ = 2 sin2 (θ/2)
- sin θ = 2 sin (θ/2) cos (θ/2
Calculation:
We have to find the value of \({\left[ {\frac{{\sin \frac{{\rm{\pi }}}{6} + {\rm{i}}\left( {1 - \cos \frac{{\rm{\pi }}}{6}} \right)}}{{\sin \frac{{\rm{\pi }}}{6} - {\rm{i}}\left( {1 - \cos \frac{{\rm{\pi }}}{6}} \right)}}} \right]^3}\)
\( \Rightarrow {\left[ {\frac{{\sin \frac{{\rm{\pi }}}{6} + {\rm{i}}\left( {1 - \cos \frac{{\rm{\pi }}}{6}} \right)}}{{\sin \frac{{\rm{\pi }}}{6} - {\rm{i}}\left( {1 - \cos \frac{{\rm{\pi }}}{6}} \right)}}} \right]^3} = {\rm{\;}}{\left[ {\frac{{2 \times \sin \frac{{\rm{\pi }}}{{12}} \times \cos \frac{{\rm{\pi }}}{{12}} + {\rm{i}}\left( {{\rm{\;}}2{{\sin }^2}\frac{{\rm{\pi }}}{{12}}} \right)}}{{2 \times \sin \frac{{\rm{\pi }}}{{12}} \times \cos \frac{{\rm{\pi }}}{{12}} - {\rm{i}}\left( {{\rm{\;}}2{{\sin }^2}\frac{{\rm{\pi }}}{{12}}} \right)}}} \right]^3}{\rm{\;}}\)
\( = {\rm{\;}}{\left[ {\frac{{2 \times \sin \frac{{\rm{\pi }}}{{12}} \times \left( {\cos \frac{{\rm{\pi }}}{{12}} + {\rm{i}}\sin \frac{{\rm{\pi }}}{{12}}} \right)}}{{2 \times \sin \frac{{\rm{\pi }}}{{12}} \times \left( {\cos \frac{{\rm{\pi }}}{{12}} - {\rm{i}}\sin \frac{{\rm{\pi }}}{{12}}} \right)}}} \right]^3}\)
\(= {\rm{\;}}{\left[ {\frac{{\left( {\cos \frac{{\rm{\pi }}}{{12}} + {\rm{i}}\sin \frac{{\rm{\pi }}}{{12}}} \right)}}{{\left( {\cos \frac{{\rm{\pi }}}{{12}} - {\rm{i}}\sin \frac{{\rm{\pi }}}{{12}}} \right)}}} \right]^3}\) (∵eix = cos x + i sin x and e-ix = cos x - i sin x)
\(= {\rm{\;}}{\left[ {\frac{{{{\rm{e}}^{\frac{{{\rm{i\pi }}}}{{12}}}}}}{{{{\rm{e}}^{\frac{{ - {\rm{i\pi }}}}{{12}}}}}}} \right]^3} = {\left[ {{{\rm{e}}^{\frac{{{\rm{i\pi }}}}{{12}}}}{\rm{\;}} \times {\rm{\;}}{{\rm{e}}^{\frac{{{\rm{i\pi }}}}{{12}}}}} \right]^3} = {\left[ {{{\rm{e}}^{\frac{{{\rm{i\pi }}}}{6}}}{\rm{\;}}} \right]^3} = {\rm{\;}}{{\rm{e}}^{\frac{{{\rm{i\pi }}}}{2}}}\)
= cos (π/2) + i sin (π/2) = 0 + i = i
If x = (cos π/14 + i sin π/14), y = (cos 9π/14 + i sin 9π/14) then find the value of x5 ⋅ y15 ?
Answer (Detailed Solution Below)
De Moivre's Theorem Question 8 Detailed Solution
Download Solution PDFConcept:
\({e^{i\; ⋅ \;\theta }} = \cos \theta + i\sin \theta \)
Calculation:
Given:
x = (cos π/14 + i sin π/14), y = (cos 9π/14 + i sin 9π/14)
As we know that,
\({e^{i\; ⋅ \;\theta }} = \cos \theta + i\sin \theta \)
We can re-write x and y as:
⇒ x = ei ⋅ π/14 and y = ei ⋅ 9π/14
⇒ x5 = ei ⋅ 5π/14 and y15 = ei ⋅ 135π/14
⇒ x5 ⋅ y15 = ei ⋅ 10π
If x = (cos π/9 + i sin π/9 )18 and y = (cos π/16 + i sin π/16 )8 then find the value of x. y-2 ?
Answer (Detailed Solution Below)
De Moivre's Theorem Question 9 Detailed Solution
Download Solution PDFConcept:
\({e^{i\theta }} = \cos \theta + i\sin \theta \)
Calculation:
Given: x = (cos π/9 + i sin π/9 )18 and y = (cos π/16 + i sin π/16 )8
As we know that, \({e^{i\theta }} = \cos \theta + i\sin \theta \)
⇒ y = (cos π/16 + i sin π/16 )8 = [ei ⋅ π/16]8 = ei ⋅ π/2
⇒ ei ⋅ π/2 = cos π/2 + i sin π/2 = i
⇒ y = i
So, y-2 = i-2 = - 1 ----(1)
Similarly,
As we know that, \({e^{i\theta }} = \cos \theta + i\sin \theta \)
⇒ x = (cos π/9 + i sin π/9 )18 = [ei ⋅ π/9]18 = ei ⋅ 2π
⇒ ei ⋅ 2π = cos 2π + i sin 2π = 1
⇒ x = 1 -------(2)
So, from (1) and (2), we get
⇒ x ⋅ y-2 = 1 × - 1 = - 1
Evaluate (cos π/9 + i sin π/9 )18 = ?
Answer (Detailed Solution Below)
De Moivre's Theorem Question 10 Detailed Solution
Download Solution PDFConcept:
\({e^{i\; ⋅ \;\theta }} = \cos \theta + i\sin \theta \)
Calculation:
As we know that,
\({e^{i\; ⋅ \;\theta }} = \cos \theta + i\sin \theta \)
⇒ (cos π/9 + i sin π/9 )18
= [ei ⋅ π/9]18 = ei ⋅ 2π
⇒ ei ⋅ 2π
= cos 2π + i sin 2π = 1
Evaluate (cos π/16 + i sin π/16 )8 = ?
Answer (Detailed Solution Below)
De Moivre's Theorem Question 11 Detailed Solution
Download Solution PDFConcept:
\({e^{i\; ⋅ \;\theta }} = \cos \theta + i\sin \theta \)
Calculation:
As we know that, \({e^{i\; ⋅ \;\theta }} = \cos \theta + i\sin \theta \)
⇒ (cos π/16 + i sin π/16 )8 = [ei ⋅ π/16]8 = ei ⋅ π/2
⇒ ei ⋅ π/2 = cos π/2 + i sin π/2 = i
Let z be a complex number such that |z| = 4 and arg \(z = \frac{{5\pi }}{6}\). What is z equal to?
Answer (Detailed Solution Below)
De Moivre's Theorem Question 12 Detailed Solution
Download Solution PDFConcept:
Relation between modulus and argument of a complex number:
For any complex number \(z\) if the modulus is given by \(|z|\) and argument is \(\theta\) then the following relation always holds:
\(z = |z|e^{i\theta}\)
\(e^{i\theta} = \cos \theta+i\sin\theta\)
Calculation:
Let the given complex number be \(z\) then we have \(|z| = 4\) and arg \(z = \dfrac{5\pi}{6}\).
Therefore, \(\theta = \dfrac{5\pi}{6}\).
Now using the above formulae,
\(\begin{align*} z &= |z|e^{i\theta}\\ &= 4\left(e^{i\frac{5\pi}{6}}\right)\\ &= 4\left(\cos\dfrac{5\pi}{6}+i\sin\dfrac{5\pi}{6}\right)\\ &= 4\left(-\dfrac{\sqrt3}{2} + i\dfrac{1}{2}\right)\\ &= -2\sqrt3+2i \end{align*}\)
Therefore, the required complex number is \(z = -2\sqrt3+2i\).
\((1+i\sqrt{3})^n + (1-i\sqrt{3})^n\) :
Answer (Detailed Solution Below)
De Moivre's Theorem Question 13 Detailed Solution
Download Solution PDFConcept:
Let z = x + iy be any complex number then its polar form is \(\rm z = r(cos\;\theta + isin\;\theta) \), where r = \(\rm \sqrt{x^2+y^2}\) and \(\rm \theta = tan^{-1}{(\dfrac y x)}\)
De Moivre’s Theorem
Given any complex number cos θ + i sin θ and any integer n,
(cos θ + i sin θ )n = cos nθ + i sin nθ
Calculations:
To Find \(\rm (1+i\sqrt{3})^n + (1-i\sqrt{3})^n\)
First write the complex numbers \((\rm 1+i\sqrt{3})\) and \((\rm 1-i\sqrt{3})\) in polar form and apply De - Moivers theorem.
Let z = x + iy be any complex number then its polar form is \(\rm z = r(cos\;\theta + isin\;\theta) \), where r = \(\rm \sqrt{x^2+y^2}\) and \(\rm \theta = tan^{-1}{(\dfrac y x)}\)
The polar form of \((\rm 1+i\sqrt{3})\) is \(\rm 2(cos\;\dfrac{\pi}{3} + isin\;\dfrac{\pi}{3}) \)
The polar form of \((\rm 1-i\sqrt{3})\) is \(\rm 2(cos\;\dfrac{\pi}{3} - isin\;\dfrac{\pi}{3}) \)
Consider, \((1+i\sqrt{3})^n + (1-i\sqrt{3})^n\)
= \(\Big[\rm 2(cos\;\dfrac{\pi}{3} + isin\;\dfrac{\pi}{3})\Big]^n\) + \(\Big[\rm 2(cos\;\dfrac{\pi}{3} - isin\;\dfrac{\pi}{3})\Big]^n\)
Apply De Moivre’s Theorem
Given any complex number cos θ + i sin θ and any integer n,
(cos θ + i sin θ )n = cos nθ + i sin nθ .
= \(\rm 2^n(cos\;\dfrac{n\pi}{3} + isin\;\dfrac{n\pi}{3})\) + \(\rm 2^n(cos\;\dfrac{n\pi}{3} - isin\;\dfrac{n\pi}{3})\)
= \(\rm2^{n+1} \cos \dfrac{n\pi}{3}\)
Hence, \((1+i\sqrt{3})^n + (1-i\sqrt{3})^n\)= \(\rm2^{n+1} \cos \dfrac{n\pi}{3}\)
Evaluate the expression \({\left( {\frac{{\sqrt 2 + i\;\sqrt 2 }}{2}} \right)^{64}}\)
Answer (Detailed Solution Below)
De Moivre's Theorem Question 14 Detailed Solution
Download Solution PDFConcept:
\({e^{i\; ⋅ \;\theta }} = \cos \theta + i\sin \theta \)
Calculation:
The given expression:\({\left( {\frac{{√ 2 + i\;√ 2 }}{2}} \right)^{64}}\) can re-written as
= \((\frac{\sqrt 2}{2}\ +\ \frac{\sqrt 2}{2}i)^{64}\)
= \((\frac{1}{\sqrt 2}\ +\ \frac{1}{\sqrt 2}i)^{64}\)
As we know that sin π/4 = 1/√2 = cos π/4
So, we can write the given expression \({\left( {\frac{{√ 2 + i\;√ 2 }}{2}} \right)^{64}}\)as
= (cos π/4 + i sin π/4)64
As we know that, \({e^{i\; ⋅ \;\theta }} = \cos \theta + i\sin \theta \)
⇒ (cos π/4 + i sin π/4)64 = (ei ⋅ π/4 )64
⇒ (cos π/4 + i sin π/4)64 = ei ⋅ 16π
If \(\rm z=(\frac{\sqrt3}{2}+\frac{i}{2})^5+(\frac{\sqrt3}{2}-\frac{i}{2})^5\), then
Answer (Detailed Solution Below)
De Moivre's Theorem Question 15 Detailed Solution
Download Solution PDFConcept:
De Moivre's formula:
If z = reiθ = r(cos θ + i sin θ) , then zn = rneinθ(cos nθ + i sin nθ)
Calculation:
Given, z = \((\frac{√3}{2}+\frac{i}{2})^5+(\frac{√3}{2}-\frac{i}{2})^5\)
⇒ z = \(\left(\cos \frac{\pi}{6}+i\sin\frac{\pi}{6}\right)^5+\left(\cos\frac{-\pi}{6}+i\sin\frac{-\pi}{6}\right)^5\)
⇒ z = \(\left(e^{i\frac{\pi}{6}}\right)^5+\left(e^{i\frac{-\pi}{6}}\right)^5\)
⇒ z = \(\left(e^{i\frac{5\pi}{6}}\right)+\left(e^{i\frac{-5\pi}{6}}\right)\)
⇒ z = \(\left(\cos \frac{5\pi}{6}+i\sin\frac{5\pi}{6}\right)+\left(\cos\frac{-5\pi}{6}+i\sin\frac{-5\pi}{6}\right)\)
⇒ z = \(\left(\cos \frac{5\pi}{6}+i\sin\frac{5\pi}{6}\right)+\left(\cos\frac{5\pi}{6}-i\sin\frac{5\pi}{6}\right)\)
⇒ z = \(\left[\cos (\pi-\frac{5\pi}{6})+i\sin(\pi-\frac{5\pi}{6})\right]+\left[\cos (\pi-\frac{5\pi}{6})-i\sin(\pi-\frac{5\pi}{6})\right]\)
⇒ z = \(\left(\cos \frac{\pi}{6}+i\sin\frac{\pi}{6}\right)+\left(\cos\frac{\pi}{6}-i\sin\frac{\pi}{6}\right)\)
⇒ z = 2 cos \(\frac{\pi}{6}\) = √3
∴ Im (z) = 0