Divisibility In Z & Euler Function MCQ Quiz - Objective Question with Answer for Divisibility In Z & Euler Function - Download Free PDF

Last updated on May 14, 2025

Latest Divisibility In Z & Euler Function MCQ Objective Questions

Divisibility In Z & Euler Function Question 1:

The number of positive divisors of 1080 is  

  1. 30
  2. 32
  3. 23
  4. 31

Answer (Detailed Solution Below)

Option 2 : 32

Divisibility In Z & Euler Function Question 1 Detailed Solution

Concept:

Number of Divisors of a Number:

  • To find the total number of positive divisors of a number, we first perform its prime factorization.
  • If a number is expressed as a product of prime powers: a = pc₁ × qc₂ × rc₃..., then the number of positive divisors is:
  • Number of divisors = (c₁ + 1)(c₂ + 1)(c₃ + 1)...
  • This includes both 1 and the number itself as divisors.

 

Calculation:

Given number = 1080

⇒ 1080 ÷ 2 = 540

⇒ 540 ÷ 2 = 270

⇒ 270 ÷ 2 = 135

⇒ 135 ÷ 3 = 45

⇒ 45 ÷ 3 = 15

⇒ 15 ÷ 3 = 5

⇒ 5 ÷ 5 = 1

⇒ Prime factorization of 1080 = 23 × 33 × 5

Now, using the formula:

⇒ Number of divisors = (3 + 1)(3 + 1)(1 + 1)

⇒ Number of divisors = 4 × 4 × 2

∴ Hence, the number of positive divisors of 1080 is 32.

Divisibility In Z & Euler Function Question 2:

Which one of the following is equal to 139 + 239 + 339 + ... + 9839 in ℤ/99ℤ ? 

  1. 98
  2. 99
  3. 0
  4. 39

Answer (Detailed Solution Below)

Option 3 : 0

Divisibility In Z & Euler Function Question 2 Detailed Solution

Concept:

As a + b ≡ 0 (mod a + b) so, \(a^{2m-1}+b^{2m-1}≡ 0\) (mod a+b) where m is any positive integer

Explanation:

139 + 239 + 339 + ... + 9839

Here 1 + 98 ≡ 0 (mod 99), 2 + 97 ≡ 0 (mod 99), 3 + 96 ≡ 0 (mod 99), ....49 + 50 ≡ 0 (mod 99)

So, 139+ 9839 ≡ 0 (mod 99), 239+ 9739 ≡ 0 (mod 99), 339+ 9639 ≡ 0 (mod 99), ...., 4939+ 5039 ≡ 0 (mod 9)

Adding them we get

139 + 239 + 339 + ... + 9839  ≡ 0 (mod 99)

Hence 139 + 239 + 339 + ... + 9839  is equal to 0 in ℤ/99ℤ

(3) is correct

Divisibility In Z & Euler Function Question 3:

Consider the Euler's totient function, denoted as ϕ(n), which gives the count of positive integers less than or equal to n that are relatively prime to n.

Let ϕ(n) be the Euler's totient function for a positive integer n.

Which of the following statements about ϕ(n) is correct?

  1. ϕ(10) = 4
  2. ϕ(15) = 9
  3. ϕ(12) = 6
  4. ϕ(25) = 20

Answer (Detailed Solution Below)

Option 1 : ϕ(10) = 4

Divisibility In Z & Euler Function Question 3 Detailed Solution

Concept Used:

For a positive integer n, Euler's totient function is defined as follows:

\( \phi(n) = \text{number of positive integers } k \leq n \text{ such that } \text{gcd}(n, k) = 1\)

Here, gcd(n, k) represents the greatest common divisor of n and k.

Some properties of Euler's totient function include:

  • ϕ(1)  = 1, as 1 has no positive integers less than itself.
  • If p is a prime number, then ϕ(p)  = p - 1, as all positive integers less than p are relatively prime to p.
  • For any two distinct prime numbers p and q, ϕ(pq) = (p - 1)(q - 1), due to the property that the totient function is multiplicative for relatively prime numbers.
  • ϕ(n) is even for n ≥ 3, except for powers of 2, where ϕ(2k) = 2k-1.

 

Explanation:

Using the properties, we can calculate the values as follows:

ϕ(10) = ϕ(2 × 5) = (2 -1)(5 - 1) = 1 × 4 = 4

ϕ(15) ϕ(3 × 5) = (3 - 1)(5 - 1) = 2 × 4 = 8

ϕ(12) ϕ(22 × 3) = (22-1)(3 - 1) = 2 × 2 = 4

For n = 25,

The positive integers less than or equal to 25 are 1, 2, 3, ..., 25.

Numbers relatively prime to 25 are 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24.

So, ϕ(25)=20.

Thus, option 1 and option 4 are correct.

Divisibility In Z & Euler Function Question 4:

For any integer n ≥ 1, let

d(n) = number of positive divisors of n

v(n) = number of distinct prime divisors of n

ω(n) = number of prime divisors of n counted with multiplicity 

[for example : If p is prime, then d(p) = 2, v(p) = v(p2) = 1, \(ω\)(p2) = 2] 

  1. if n ≥ 1000 and \(\omega\)(n) > 2, then d(n) > log n
  2. there exists n such that d(n) > 3\(\sqrt{n}\) 
  3. for every n, 2v(n) ≤ d(n) ≤ 2\(\omega\)(n)
  4. if \(\omega\)(n) = \(\omega\)(m), then d(n) = d(m)

Answer (Detailed Solution Below)

Option 3 : for every n, 2v(n) ≤ d(n) ≤ 2\(\omega\)(n)

Divisibility In Z & Euler Function Question 4 Detailed Solution

Concept:

d(n) = number of positive divisors of n

v(n) = number of distinct prime divisors of n

ω(n) = number of prime divisors of n counted with multiplicity 

 n = p1r1p2r2........pkrk 

then d(n) = (r1+1)(r2+1)........(rk+k)

ω (n) = r1+ r2+........+ rk

v(n) = k 

Explanation:

(1) n = (37)2 

Then ω(n) = 2 

d(n) = 3

and log n = log (37)2 = 2log (37) > 3

Therefore, option (1) is not correct.

(2) n = p1r1p2r2........pkrk 

d(n) = (r1+1)(r2+1)........(rk+k)

3√ n = 3\(p_1^{\frac{r_1}{2}}p_2^{\frac{r_2}{2}}........p_k^{\frac{r_k}{2}}\)

Clearly d(n) ≤ 3√ n ∀ n ∈ N

Therefore, there does not exist n ∈ N ; d(n) > 3√ n

Therefore, Option (2) is not true. 

(3) Let n = p1r1p2r2........pkrk 

d(n) = (r1+1)(r2+1)........(rk+k)

v(n) = k 

ω (n) = r1+ r2+........+ rk

2v(n) = 2k, 2ω (n)= 2r1+r2+.....+rk

⇒2v(n) ≤ d(n) ≤ 2r1+r2+.....+rk

⇒2v(n)  ≤ d(n) ≤ 2ω(n) 

Therefore, option (3) is correct.

(4) n = 9 = 32

m = 3x7 = 21

ω(n) = ω(m) = 2 

d(n) = 3

d(m) = 4

Therefore, d(n) ≠ d(m)

Therefore, option (4) is not correct.

Divisibility In Z & Euler Function Question 5:

Let n ∈ ℤ be such that n is congruent to 1 mod 7 and n is congruent to 4 mod 15. Which of the following statements are true? 

  1. n is congruent to 1 mad 3.  
  2. n is congruent to 1 mod 35. 
  3. n is congruent to 1 mod 21.  
  4. n is congruent to 1 mod 5.

Answer (Detailed Solution Below)

Option :

Divisibility In Z & Euler Function Question 5 Detailed Solution

Concept:

≡ b mod m means m divides a - b.

Explanation:

n ≡ 1 mod 7

Then 7/(n - 1)

n - 1 = 7k, k ∈ \(\mathbb Z\) 

≡ 4 mod 15 

n - 4 = 15k1k∈ \(\mathbb Z\)

Then n = 64

64 - 1 = 63 divisible by 3

So, n is congruent to 1 mad 3.  

(1) is correct

64 - 1 = 63 not divisible by 35

So, n is not congruent to 1 mad 35.  

(2) is false

64 - 1 = 63 not divisible by 21

n is congruent to 1 mod 21.  

(3) is correct

64 - 1 = 63 not divisible by 5

n is not congruent to 1 mod 5.  

(4) is false

Top Divisibility In Z & Euler Function MCQ Objective Questions

Which of the following statements is true?

  1. Every even integer n ≥ 16 divides (n - 1)! + 3
  2. Every odd integer n ≥ 16 divides (n - 1)!
  3. Every even integer n ≥ 16 divides (n - 1)!
  4. For every integer n ≥ 16, n2 divides n! + 1

Answer (Detailed Solution Below)

Option 3 : Every even integer n ≥ 16 divides (n - 1)!

Divisibility In Z & Euler Function Question 6 Detailed Solution

Download Solution PDF

Explanation:

For this type of problems, just try to discard given options by taking suitable counter examples..

For option (1). Let n = 16 then

(n - 1)! + 3 = 15! + 3 = even + odd = odd

⇒ No any even integer divide it ie to (n - 1)! + 3

⇒ option (1) is false. (Because z not true for all)

For option (2). taken n = 17, then

∵ (n - 1)! = 16! , Here n = 17 is prime so it will never divide 16!

⇒ option (2) false.

For option (4). take n = 16, then n2 = 162 + n! + 1 = 16 ! + 1 Here 162 is even while 16! + 1 is odd integer So 162 + 16! + 1 

⇒ option (4) is false.

For option (3) is true [consider any n ≥ 16 even]

Note: Proof for this option is too long, so just pay to understand with example.

\(=\frac{p_1^{r_1} p_2^{r_2} \cdots p_n^{r_n}}{p_1^{r_1-1} \cdot\left(p_1-1\right) \cdot p_2^{r_2-1}\left(p_2-1\right) \ldots p_n^{r_{n-1}}\left(p_{n-1}\right)}\)

\(=\frac{p_1 p_2 \cdots p_n}{\left(p_1-1\right)\left(p_2-1\right) \cdots\left(p_n-1\right)}\) = integer (given) = p/n1/n

∵ (p1 - 1) × p1 ⇒ ∃ some other prime p2 S.t (p1 - 1)|p2

But ∵  p2 is also a prime, so not divisible by any of integer except 1 .

(there of one prime factor. is 2, then n tar as at most two distinct prime faster else one.

thus, option (3) is true

Let φ(n) be the cardinality of the set {a | 1 ≤ a ≤ n, (a, n) = 1} where (a, n) denotes the gcd of a and n. Which of the following is NOT true?

  1. There exist infinitely many n such that φ(n) > φ(n + 1).
  2. There exist infinitely many n such that φ(n) < φ(n + 1).
  3. There exists N ∈ \(\mathbb{N}\) such that N > 2 and for all n >  N, φ(N) < φ(n)
  4. The set \(\left\{\frac{φ(n)}{n}: n ∈ \mathbb{N}\right\}\) has finitely many limit points.

Answer (Detailed Solution Below)

Option 4 : The set \(\left\{\frac{φ(n)}{n}: n ∈ \mathbb{N}\right\}\) has finitely many limit points.

Divisibility In Z & Euler Function Question 7 Detailed Solution

Download Solution PDF

Concept:

A mapping ϕ: \(\mathbb N\) →  \(\mathbb N\) defined by ϕ(n) = {x ∈ \(\mathbb N\) | 1 ≤ x

ϕ (pn) = pn - pn-1

ϕ(mn) = ϕ(m)ϕ(n) if gcd(m, n) = 1 
Explanation:

ϕ(n) table:

n+1 ϕ(n+1)  n ϕ(n) 
5 4 4 2
7 6 6 2
11 10 10 4
13 12 12 4
17 16 16 8
19 18 18 6
23 22 22 10
29 28 28 12
31 30 30 8

From the table of ϕ(n) we can see that if we take n as a prime number greater than 3, then ϕ(n) > ϕ(n+1) and if we take n + 1 as a prime number greater than 3, then ϕ(n) < ϕ(n+1)  

∴ options (1) and (2) are correct.

ϕ(n) table:

N ϕ(N)  n ϕ(n) 
6 2 7 6
6 2 8 4
6 2 9 6
6 2 10 4
6 2 11 10
6 2 12 4
6 2 13 12
6 2 14 6
6 2 15 8

So if we take N = 6, then ∀ n > 6, we have ϕ(N) < ϕ(n)

So option (3) is correct 

So the option that is not true is (4)

Divisibility In Z & Euler Function Question 8:

Let S = {n : 1 ≤ n ≤ 999; 3|n or 37|n}. How many integers are there in the set Sc = {n : 1 ≤ n ≤ 999; n ∉ S}?

  1. 639
  2. 648
  3. 666
  4. 990

Answer (Detailed Solution Below)

Option 2 : 648

Divisibility In Z & Euler Function Question 8 Detailed Solution

Explanation:

Given 1 ≤ n ≤ 999

Number of integers n such that 1 ≤ n ≤ 999 and divisible by 3 is\(\left[\frac{999}{3}\right]\) = 333

Number of integers n such that 1 ≤ n ≤ 999 divisible by 37 is

\(\left[\frac{999}{37}\right]\) = 27

LCM of 3 and 37 = 3 × 37 = 111

So Number of integers n such that 1 ≤ n ≤ 999 divisible by both 3 and 37 is \(\left[\frac{999}{111}\right]\) = 9

So integers contains in S = 333 + 27 - 9 - 351

Therefore integers contains in Sc = 999 - 351 = 648

∴ The number of integers in the set Sc is 648.

Divisibility In Z & Euler Function Question 9:

How many generators does a cyclic group of order 36 have?

  1. 6
  2. 12
  3. 18
  4. 24

Answer (Detailed Solution Below)

Option 2 : 12

Divisibility In Z & Euler Function Question 9 Detailed Solution

Concept:

A cyclic group of order 'n' has ϕ(n) generators.    

 For  n = \(p_1^{a_1}⋅ p_2^{a_2}⋅ p_3^{a_3}.....p_k^{a_k}\)     

where, p1, p2, ......, p are distinct primes, then   

ϕ(n) =  \(ϕ(p_1^{a_1})⋅ ϕ(p_2^{a_2})⋅ ϕ(p_3^{a_3}).....ϕ(p_k^{a_k})\)

Also \(ϕ(p^a) = p^a -p^{a-1}\)

Explanation:

Therefore, 

ϕ(36) = ϕ(62 ) = ϕ (22 ⋅ 32) = ϕ (22) ⋅ ϕ(32) = (22 - 2) (32 - 3)

= (2) (6) = 12   

Hence 12 generators will be there 

(2) is correct                    

Divisibility In Z & Euler Function Question 10:

Which one of the following is equal to 137 + 237 + 337 + ... + 8837 in ℤ/89ℤ ? 

  1. 88
  2. -88
  3. -2
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Divisibility In Z & Euler Function Question 10 Detailed Solution

Concept:

As a + b ≡ 0 (mod a + b) so, \(a^{2m-1}+b^{2m-1}≡ 0\) (mod a+b) where m is any positive integer

Explanation:

 137 + 237 + 337 + ... + 8837 

Here 1 + 88 ≡ 0 (mod 89), 2 + 87 ≡ 0 (mod 89), 3 + 86 ≡ 0 (mod 89), ....44 + 45 ≡ 0 (mod 89)

So, 137+ 8837 ≡ 0 (mod 89), 237+ 8737 ≡ 0 (mod 89), 337+ 8637 ≡ 0 (mod 89), ...., 4437+ 4537 ≡ 0 (mod 89)

Adding them we get

137 + 237 + 337 + ... + 8837 ≡ 0 (mod 89)

Hence 137 + 237 + 337 + ... + 8837 is equal to 0 in ℤ/89ℤ

(4) is correct

Divisibility In Z & Euler Function Question 11:

Let \(\mathbb{N}\) = {1, 2 ....} denote the set of positive integers. For n ∈ \(\mathbb{N}\), let

An = {(x, y, z) ∈ \(\mathbb{N}\)3∶  xn + yn = z and  z < n}.

Let F(n) be the cardinality of the set An. Which of the following statements are true?

  1. F(n) is always finite for n ≥ 3
  2. F(2) = ∞ 
  3. F(n) = 0 for all n
  4. F(n) is non zero for some n > 2

Answer (Detailed Solution Below)

Option :

Divisibility In Z & Euler Function Question 11 Detailed Solution

Concept:

Fermat's last theorem: Let n ∈ \(\mathbb{N}\) and n ≥ 3 then there does not exist x, y, z ∈ \(\mathbb{N}\) such that xn + yn = z  

Explanation:

F(n) = |An| and An = {(x, y, z) ∈ \(\mathbb{N}\)3∶  xn + yn = z and  z < n}.

For  n = 1

A1 = {(x, y, z) ∈ \(\mathbb{N}\)3∶  x1 + y1 = z and  z < 1}.

Now since z ∈ \(\mathbb{N}\) so z can't be < 1.

Hence A1 = {ϕ}

so F(1) = 0

For n = 2

A2 = {(x, y, z) ∈ \(\mathbb{N}\)3∶  x2 + y2 = z and  z < 2}.

Now since z ∈ \(\mathbb{N}\) and z < 2 so z = 1

 x2 + y2 = 1

Now, x, y ∈ \(\mathbb{N}\) so x ≥ 1, y ≥ 1

hence  x2 + y2 ≥ 1 + 1 = 2

So there is not such x, y exist such that x2 + y2 = 1

Hence A2 = {ϕ}

so F(2) = 0

Now from Fermat's last theorem, 

An = {ϕ} for all n ≥ 3

so F(n) = 0 for all n ≥ 3

Hence F(n) is always finite for n ≥ 3 and F(n) = 0 for all n 

option (1) and (3) are correct

Divisibility In Z & Euler Function Question 12:

The last two digits of 32019 are

  1. 27
  2. 37
  3. 57
  4. 67

Answer (Detailed Solution Below)

Option 4 : 67

Divisibility In Z & Euler Function Question 12 Detailed Solution

Explanation:

Recall Euler's theorem

if n is any positive integer & GCD (a,n) = 1

then aϕ (n) ≡ 1 (mod n) .....(i)

Here, for last two digit we have to calculate 

32019 mod 100

so, from (i) 

3ϕ(100) ≡ 1 mod (100)

∵ ϕ (100) = 40 & 2019 = 40 × 50 + 19

So, 32019 ≡ (340)50 . 319 mod (100)

≡ 319 mod (100)

≡ 67 ...opt(d) TRUE

319  36.36​.36​.3 = qImage64293074775965e6cd05aef9mod(100)

≡ 67 (mod 100)

(In Z100

31 ≡ 3, 32 ≡ 9, 33 ≡ 27, 34 ≡ 81, 35 ≡ 43, 36 ≡ 29,.....)

Option (4) is correct

Divisibility In Z & Euler Function Question 13:

Which of the following statements is true?

  1. Every even integer n ≥ 16 divides (n - 1)! + 3
  2. Every odd integer n ≥ 16 divides (n - 1)!
  3. Every even integer n ≥ 16 divides (n - 1)!
  4. For every integer n ≥ 16, n2 divides n! + 1

Answer (Detailed Solution Below)

Option 3 : Every even integer n ≥ 16 divides (n - 1)!

Divisibility In Z & Euler Function Question 13 Detailed Solution

Explanation:

For this type of problems, just try to discard given options by taking suitable counter examples..

For option (1). Let n = 16 then

(n - 1)! + 3 = 15! + 3 = even + odd = odd

⇒ No any even integer divide it ie to (n - 1)! + 3

⇒ option (1) is false. (Because z not true for all)

For option (2). taken n = 17, then

∵ (n - 1)! = 16! , Here n = 17 is prime so it will never divide 16!

⇒ option (2) false.

For option (4). take n = 16, then n2 = 162 + n! + 1 = 16 ! + 1 Here 162 is even while 16! + 1 is odd integer So 162 + 16! + 1 

⇒ option (4) is false.

For option (3) is true [consider any n ≥ 16 even]

Note: Proof for this option is too long, so just pay to understand with example.

\(=\frac{p_1^{r_1} p_2^{r_2} \cdots p_n^{r_n}}{p_1^{r_1-1} \cdot\left(p_1-1\right) \cdot p_2^{r_2-1}\left(p_2-1\right) \ldots p_n^{r_{n-1}}\left(p_{n-1}\right)}\)

\(=\frac{p_1 p_2 \cdots p_n}{\left(p_1-1\right)\left(p_2-1\right) \cdots\left(p_n-1\right)}\) = integer (given) = p/n1/n

∵ (p1 - 1) × p1 ⇒ ∃ some other prime p2 S.t (p1 - 1)|p2

But ∵  p2 is also a prime, so not divisible by any of integer except 1 .

(there of one prime factor. is 2, then n tar as at most two distinct prime faster else one.

thus, option (3) is true

Divisibility In Z & Euler Function Question 14:

Which one of the following is equal to 139 + 239 + 339 + ... + 9839 in ℤ/99ℤ ? 

  1. 98
  2. 99
  3. 0
  4. 39

Answer (Detailed Solution Below)

Option 3 : 0

Divisibility In Z & Euler Function Question 14 Detailed Solution

Concept:

As a + b ≡ 0 (mod a + b) so, \(a^{2m-1}+b^{2m-1}≡ 0\) (mod a+b) where m is any positive integer

Explanation:

139 + 239 + 339 + ... + 9839

Here 1 + 98 ≡ 0 (mod 99), 2 + 97 ≡ 0 (mod 99), 3 + 96 ≡ 0 (mod 99), ....49 + 50 ≡ 0 (mod 99)

So, 139+ 9839 ≡ 0 (mod 99), 239+ 9739 ≡ 0 (mod 99), 339+ 9639 ≡ 0 (mod 99), ...., 4939+ 5039 ≡ 0 (mod 9)

Adding them we get

139 + 239 + 339 + ... + 9839  ≡ 0 (mod 99)

Hence 139 + 239 + 339 + ... + 9839  is equal to 0 in ℤ/99ℤ

(3) is correct

Divisibility In Z & Euler Function Question 15:

For any integer n ≥ 1, let

d(n) = number of positive divisors of n

v(n) = number of distinct prime divisors of n

ω(n) = number of prime divisors of n counted with multiplicity 

[for example : If p is prime, then d(p) = 2, v(p) = v(p2) = 1, \(ω\)(p2) = 2] 

  1. if n ≥ 1000 and \(\omega\)(n) > 2, then d(n) > log n
  2. there exists n such that d(n) > 3\(\sqrt{n}\) 
  3. for every n, 2v(n) ≤ d(n) ≤ 2\(\omega\)(n)
  4. if \(\omega\)(n) = \(\omega\)(m), then d(n) = d(m)

Answer (Detailed Solution Below)

Option 3 : for every n, 2v(n) ≤ d(n) ≤ 2\(\omega\)(n)

Divisibility In Z & Euler Function Question 15 Detailed Solution

Concept:

d(n) = number of positive divisors of n

v(n) = number of distinct prime divisors of n

ω(n) = number of prime divisors of n counted with multiplicity 

 n = p1r1p2r2........pkrk 

then d(n) = (r1+1)(r2+1)........(rk+k)

ω (n) = r1+ r2+........+ rk

v(n) = k 

Explanation:

(1) n = (37)2 

Then ω(n) = 2 

d(n) = 3

and log n = log (37)2 = 2log (37) > 3

Therefore, option (1) is not correct.

(2) n = p1r1p2r2........pkrk 

d(n) = (r1+1)(r2+1)........(rk+k)

3√ n = 3\(p_1^{\frac{r_1}{2}}p_2^{\frac{r_2}{2}}........p_k^{\frac{r_k}{2}}\)

Clearly d(n) ≤ 3√ n ∀ n ∈ N

Therefore, there does not exist n ∈ N ; d(n) > 3√ n

Therefore, Option (2) is not true. 

(3) Let n = p1r1p2r2........pkrk 

d(n) = (r1+1)(r2+1)........(rk+k)

v(n) = k 

ω (n) = r1+ r2+........+ rk

2v(n) = 2k, 2ω (n)= 2r1+r2+.....+rk

⇒2v(n) ≤ d(n) ≤ 2r1+r2+.....+rk

⇒2v(n)  ≤ d(n) ≤ 2ω(n) 

Therefore, option (3) is correct.

(4) n = 9 = 32

m = 3x7 = 21

ω(n) = ω(m) = 2 

d(n) = 3

d(m) = 4

Therefore, d(n) ≠ d(m)

Therefore, option (4) is not correct.

Get Free Access Now
Hot Links: teen patti master official teen patti cash teen patti customer care number teen patti game - 3patti poker teen patti comfun card online