Identities MCQ Quiz - Objective Question with Answer for Identities - Download Free PDF

Last updated on Jun 17, 2025

Solving Identities Question Answers will help you learn and prepare for this section of any exam. The detailed solutions provided will enable you to check and analyse your answers. Once you attempt this list of Identities MCQ Quiz, you can consider yourself exam ready to solve any and all kinds of questions from this section. Start practising the Identities Objective Questions today and learn tricks and shortcuts to approach questions while solving them in lesser duration.

Latest Identities MCQ Objective Questions

Identities Question 1:

If  and  then what is the value of (x - a)2 - (y - b)2 ?

  1. a2
  2. b2
  3. ab
  4. a2b2
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : b2

Identities Question 1 Detailed Solution

Concept used:

In question there are 4 variables (a, b, x and y) and only 2 equation. Hence we put any value to a and b to get value of x and y

Calculation:

Let a = 0 and b = 1

⇒ 

⇒ 

Again,

⇒ 

⇒ 

Now,

(x - a)2 - (y - b)2 = 

⇒ 

Also, b2 = (1)2 = 1

∴ The required value is b2.

Identities Question 2:

  then which of the following is a rational number?

  1. c d 
  2. a b c d e
  3. a b d e 
  4. a b

Answer (Detailed Solution Below)

Option 3 : a b d e 

Identities Question 2 Detailed Solution

Given:

a = 8√6 - 8√5

b = 8√6 + 8√5

c = 6√6 + 6√5

d = 4√6 + 4√5

e = √6 + √5

Formula used:

A number is rational if it does not contain any square root (√) term.

Calculations:

Check each pair:

1. a × b:

a × b = (8√6 - 8√5)(8√6 + 8√5)

⇒ a × b = (8√6)2 - (8√5)2

⇒ a × b = 64 × 6 - 64 × 5

⇒ a × b = 384 - 320

⇒ a × b = 64 (Rational)

2. c × d:

c × d = (6√6 + 6√5)(4√6 + 4√5)

⇒ c × d = (6√6)(4√6) + (6√6)(4√5) + (6√5)(4√6) + (6√5)(4√5)

⇒ c × d = 24 × 6 + 24√30 + 24√30 + 24 × 5

⇒ c × d = 144 + 120 + 48√30

⇒ c × d contains √30 (Irrational)

3. d × e:

d × e = (4√6 + 4√5)(√6 + √5)

⇒ d × e = (4√6)(√6) + (4√6)(√5) + (4√5)(√6) + (4√5)(√5)

⇒ d × e = 4 × 6 + 4√30 + 4√30 + 4 × 5

⇒ d × e = 24 + 20 + 8√30

⇒ d × e contains √30 (Irrational)

Conclusion:

Among the options, only a × b is rational.

∴ The correct answer is option (3).

Identities Question 3:

 is a ______ number.

  1. Prime 
  2. Irrational 
  3. Rational 
  4. None of these 

Answer (Detailed Solution Below)

Option 3 : Rational 

Identities Question 3 Detailed Solution

Given:

Formula used:

(a + b)(a - b) = a2 - b2

Calculations:

⇒ 1375 - 1125

⇒ 250

∴ The result is a rational number. The correct answer is option (3).

Identities Question 4:

 If a=√11+√3, b=√12+√2 and c =√6 +√4, then

  1. b > a > c
  2. c > a > b
  3.  a > b >  c
  4. a > c > b

Answer (Detailed Solution Below)

Option 3 :  a > b >  c

Identities Question 4 Detailed Solution

Given:

a = √11 + √3

b = √12 + √2

c = √6 + √4

Formula used:

Compare the numerical values of a, b, and c.

Calculation:

Calculate a:

√11 ≈ 3.3166, √3 ≈ 1.732

⇒ a = 3.3166 + 1.732 = 5.0486

Calculate b:

√12 ≈ 3.4641, √2 ≈ 1.414

⇒ b = 3.4641 + 1.414 = 4.8781

Calculate c:

√6 ≈ 2.4495, √4 = 2

⇒ c = 2.4495 + 2 = 4.4495

Compare values:

a = 5.0486, b = 4.8781, c = 4.4495

⇒ a > b > c

∴ The correct answer is option (3).

Identities Question 5:

 If x is any natural number, then x3 - will always be greater than or equal to

Answer (Detailed Solution Below)

Option 1 :

Identities Question 5 Detailed Solution

Given:

If x is any natural number, then x3 - (1/x3) will always be greater than or equal to:

Option 1: 3 × (x - (1/x))

Option 2: 3 × (x + (1/x))

Option 3: x + (1/x)

Option 4: x3 + (1/x3)

Formula used:

For any natural number x, the inequality to verify is:

x3 - (1/x3) ≥ 3 × (x - (1/x))

Calculation:

Let x3 - (1/x3) = (x - (1/x)) × ((x2 + (1/x2)) + 1)

⇒ x3 - (1/x3) = (x - (1/x)) × (x2 + (1/x2) + 1)

Now, observe that x2 + (1/x2) ≥ 2 for all x > 0 (AM-GM inequality).

⇒ x2 + (1/x2) + 1 ≥ 3

⇒ (x - (1/x)) × (x2 + (1/x2) + 1) ≥ 3 × (x - (1/x))

⇒ x3 - (1/x3) ≥ 3 × (x - (1/x))

∴ The correct answer is option 1.

Top Identities MCQ Objective Questions

If x −  = 3, the value of x3 −  is

  1. 36
  2. 63
  3. 99
  4. none of these

Answer (Detailed Solution Below)

Option 1 : 36

Identities Question 6 Detailed Solution

Download Solution PDF

Given:

x - 1/x = 3

Concept used:

a3 - b3 = (a - b)3 + 3ab(a - b)

Calculation:

x3 - 1/x3 = (x - 1/x)3 + 3 × x × 1/x × (x - 1/x)

⇒ (x - 1/x)3 + 3(x - 1/x)

⇒ (3)3 + 3 × (3)

⇒ 27 + 9 = 36

∴ The value of x3 - 1/x3 is 36.

Alternate Method If x - 1/x = a, then x3 - 1/x3 = a3 + 3a

Here a = 3

x - 1/x3 = 33 + 3 × 3

= 27 + 9

= 36

If x = √10 + 3 then find the value of 

  1. 334
  2. 216
  3. 234
  4. 254

Answer (Detailed Solution Below)

Option 3 : 234

Identities Question 7 Detailed Solution

Download Solution PDF

Given:

x = √10 + 3

Formula used: 

a2 - b2 = (a + b)(a - b)

a3 - b3 = (a - b)(a2 + ab + b2)

Calculation:

⇒ 1/x = √10 - 3

     ----(1)

Squaring both side of (1),

    -----(2)

∴ The required value is 234.

 Shortcut TrickGiven:

x = √10 + 3

Formula used: 

⇒ 

Calculation:

x = √10 + 3

⇒ 1/x = √10 - 3

⇒  

⇒ 

⇒ 

∴ The required value is 234.

If , what will be the value of ?

  1. -8898
  2. -8896
  3. -8886
  4. -8892

Answer (Detailed Solution Below)

Option 3 : -8886

Identities Question 8 Detailed Solution

Download Solution PDF

Given:

x - (1/x) = (- 6)

Formula used:

If x - (1/x) = P, then

x + (1/x) = √(P2 + 4) 

If x + (1/x) = P, then

x3 + (1/x3) = (P3 - 3P)

x5 - (1/x5) = {x3 + (1/x3)} × {x2 - 1/x2} + {x - (1/x)}

Calculation:

x - (1/x) = (- 6)

x + (1/x) = √{(- 6)2 + 4} = √40 = 2√10

So, x2 - 1/x2 = (x + 1/x) (x - 1/x) = 2√10 × (-6) = -12√10

and x3 + (1/x3) =  (√40)3 - 3√40

⇒ 40√40 - 3√40 = 37 × 2√10 = 74√10

Now,

x5 - (1/x5) = {x3 + (1/x3)} × {x2 - 1/x2} + {x - (1/x)}

⇒ {74√10 × (-12√10)} + (- 6)

⇒ - 74 × 12 × (√10 × √10) - 6

⇒ (- 8880) - 6 = - 8886

∴ The correct answer is  - 8886.

If p – 1/p = √7, then find the value of p3 – 1/p3.

  1. 12√7
  2. 4√5
  3. 8√7
  4. 10√7

Answer (Detailed Solution Below)

Option 4 : 10√7

Identities Question 9 Detailed Solution

Download Solution PDF

Given:

p – 1/p = √7

Formula:

P3 – 1/p3 = (p – 1/p)3 + 3(p – 1/p)

Calculation:

P3 – 1/p3 = (p – 1/p)3 + 3 (p – 1/p)

⇒ p3 – 1/p3 = (√7)3 + 3√7

⇒ p3 – 1/p3 = 7√7 + 3√7

⇒ p3 – 1/p3 = 10√7

Shortcut Trick x - 1/x = a, then x3 - 1/x3 = a3 + 3a

Here, a = √7                                                          ( put the value in required eqn )

⇒p3 – 1/p3 = (√7)3 + 3 × √7 = 7√7 + 3√7

 ⇒p3 – 1/p3  = 10√7.

Hence; option 4) is correct.

If a + b + c = 14, ab + bc + ca = 47 and abc = 15 then find the value of a3 + b3 +c3.

  1. 815
  2. 825
  3. 835
  4. 845

Answer (Detailed Solution Below)

Option 1 : 815

Identities Question 10 Detailed Solution

Download Solution PDF

Given:

a + b + c = 14, ab + bc + ca = 47 and abc = 15

Concept used:

a³ + b³ + c³ - 3abc = (a + b + c) × [(a + b + c)² - 3(ab + bc + ca)]

Calculations:

a³ + b³ + c³ - 3abc = 14 × [(14)² - 3 × 47]

⇒ a³ + b³ + c³ – 3 × 15 = 14(196 – 141)

⇒ a³ + b³ + c³ = 14(55) + 45

⇒ 770 + 45

⇒ 815

∴ The correct choice is option 1.

If , then is equal to:

  1. 15127
  2. 13127
  3. 14527 
  4. 11512

Answer (Detailed Solution Below)

Option 1 : 15127

Identities Question 11 Detailed Solution

Download Solution PDF

Given:

Formula used:

(a + 1/a) = P ; then

(a2 + 1/a2) = P2 - 2

(a3 + 1/a3) = P3 - 3P

 = (a2 + 1/a2) × (a3 + 1/a3) - (a + 1/a)

Calculation:

a + (1/a) = 7

⇒ (a2 + 1/a2) = (7)2 - 2 = 49 - 2 = 47

⇒ (a3 + 1/a3) = (7)3 - (3 × 7) = 343 - 21 = 322

a+ (1/a5= (a2 + 1/a2) × (a3 + 1/a3) - (a + 1/a)

⇒ 47 × 322 - 7

⇒ 15134 - 7 = 15127

 ∴ The correct answer is 15127.

The sum of values of x satisfying x2/3 + x1/3 = 2 is:

  1. -3
  2. 7
  3. -7
  4. 3

Answer (Detailed Solution Below)

Option 3 : -7

Identities Question 12 Detailed Solution

Download Solution PDF

Formula used:

(a + b)3 = a3 + b3 + 3ab(a + b)

Calculation:

⇒ x2/3 + x1/3 = 2

⇒ (x2/3 + x1/3)3 = 23

⇒ x2 + x + 3x(x2/3 + x1/3) = 8

⇒ x2 + 7x - 8 = 0

⇒ x2 + 8x - x - 8 = 0

⇒ x (x + 8) - 1 (x + 8) = 0

⇒ x = - 8 or x = 1

∴ Sum of values of x = -8 + 1 = - 7.

If a + b + c = 0, then (a3 + b3 + c3)2 = ?

  1. 3a2b2c2
  2. 9a2b2c2
  3. 9abc
  4. 27abc

Answer (Detailed Solution Below)

Option 2 : 9a2b2c2

Identities Question 13 Detailed Solution

Download Solution PDF

Formula used:

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

Calculation:

a + b + c = 0

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

⇒ a3 + b3 + c3 - 3abc = 0 × (a2 + b2 + c2 - ab - bc - ca) = 0

⇒ a3 + b3 + c3 - 3abc = 0

⇒ a3 + b3 + c3 = 3abc 

Now, (a3 + b3 + c3)2 = (3abc)2 = 9a2b2c2 

If (a + b + c) = 19 and (a2 + b2 + c2) = 155, find the value of (a - b)2 + (b - c)2 + (c - a)2.

  1. 104
  2. 108
  3. 100
  4. 98

Answer (Detailed Solution Below)

Option 1 : 104

Identities Question 14 Detailed Solution

Download Solution PDF

Given:

(a + b + c) = 19

(a2 + b2 + c2) = 155

Formula used:

a2 + b2 + c2 - (ab + bc + ca) = (1/2) × [(a - b)2 + (b - c)2 + (c - a)2]

Calculation:

a + b + c = 19

Squaring both sides

⇒ (a + b + c)2 = (19)2

⇒ a2 + b2 + c2 + 2 × (ab + bc + ca) = 361

⇒ 155 + 2 × (ab + bc + ca) = 361

⇒ 2 × (ab + bc + ca) = (361 - 155)

⇒ (ab + bc + ca) = 206/2 = 103

Now,

a2 + b2 + c2 - (ab + bc + ca) = (1/2) × [(a - b)2 + (b - c)2 + (c - a)2]

⇒ 2 × (155 - 103) = (a - b)2 + (b - c)2 + (c - a)2

⇒ (a - b)2 + (b - c)2 + (c - a)2 = 104

∴ The correct answer is 104.

If , and 0 .

  1. 3√5
  2. 4√3
  3. -4√3
  4. -3√5

Answer (Detailed Solution Below)

Option 4 : -3√5

Identities Question 15 Detailed Solution

Download Solution PDF

Given:

x2 + (1/x2) = 7

Formula used:

x2 + (1/x2) = P

then x + (1/x) = √(P + 2)

and x - (1/x) = √(P - 2)

⇒ x2 - (1/x2) = {x + (1/x)} × {x - (1/x)}

Calculation:

x2 + (1/x2) = 7

⇒ x + (1/x) = √(7 + 2) = √9

⇒ x + (1/x) = 3

⇒ x - (1/x) = -√(7 - 2)

⇒ x - (1/x) = - √5 {0

x2 - (1/x2) = {x + (1/x)} × {x - (1/x)}

⇒ 3 × (- √5)

∴ The correct answer is - 3√5.

Mistake Points

Please note that 

0

so

1/x > 1

so

x + 1/x > 1

and

x - 1/x 1 so x - 1/x

so

(x - 1/x)(x + 1/x)

Hot Links: teen patti baaz lotus teen patti teen patti gold new version