Identities MCQ Quiz - Objective Question with Answer for Identities - Download Free PDF
Last updated on Jun 17, 2025
Latest Identities MCQ Objective Questions
Identities Question 1:
If
Answer (Detailed Solution Below)
Identities Question 1 Detailed Solution
Concept used:
In question there are 4 variables (a, b, x and y) and only 2 equation. Hence we put any value to a and b to get value of x and y
Calculation:
Let a = 0 and b = 1
⇒
⇒
Again,
⇒
⇒
Now,
(x - a)2 - (y - b)2 =
⇒
Also, b2 = (1)2 = 1
∴ The required value is b2.
Identities Question 2:
then which of the following is a rational number?
Answer (Detailed Solution Below)
Identities Question 2 Detailed Solution
Given:
a = 8√6 - 8√5
b = 8√6 + 8√5
c = 6√6 + 6√5
d = 4√6 + 4√5
e = √6 + √5
Formula used:
A number is rational if it does not contain any square root (√) term.
Calculations:
Check each pair:
1. a × b:
a × b = (8√6 - 8√5)(8√6 + 8√5)
⇒ a × b = (8√6)2 - (8√5)2
⇒ a × b = 64 × 6 - 64 × 5
⇒ a × b = 384 - 320
⇒ a × b = 64 (Rational)
2. c × d:
c × d = (6√6 + 6√5)(4√6 + 4√5)
⇒ c × d = (6√6)(4√6) + (6√6)(4√5) + (6√5)(4√6) + (6√5)(4√5)
⇒ c × d = 24 × 6 + 24√30 + 24√30 + 24 × 5
⇒ c × d = 144 + 120 + 48√30
⇒ c × d contains √30 (Irrational)
3. d × e:
d × e = (4√6 + 4√5)(√6 + √5)
⇒ d × e = (4√6)(√6) + (4√6)(√5) + (4√5)(√6) + (4√5)(√5)
⇒ d × e = 4 × 6 + 4√30 + 4√30 + 4 × 5
⇒ d × e = 24 + 20 + 8√30
⇒ d × e contains √30 (Irrational)
Conclusion:
Among the options, only a × b is rational.
∴ The correct answer is option (3).
Identities Question 3:
is a ______ number.
Answer (Detailed Solution Below)
Identities Question 3 Detailed Solution
Given:
Formula used:
(a + b)(a - b) = a2 - b2
Calculations:
⇒ 1375 - 1125
⇒ 250
∴ The result is a rational number. The correct answer is option (3).
Identities Question 4:
If a=√11+√3, b=√12+√2 and c =√6 +√4, then
Answer (Detailed Solution Below)
Identities Question 4 Detailed Solution
Given:
a = √11 + √3
b = √12 + √2
c = √6 + √4
Formula used:
Compare the numerical values of a, b, and c.
Calculation:
Calculate a:
√11 ≈ 3.3166, √3 ≈ 1.732
⇒ a = 3.3166 + 1.732 = 5.0486
Calculate b:
√12 ≈ 3.4641, √2 ≈ 1.414
⇒ b = 3.4641 + 1.414 = 4.8781
Calculate c:
√6 ≈ 2.4495, √4 = 2
⇒ c = 2.4495 + 2 = 4.4495
Compare values:
a = 5.0486, b = 4.8781, c = 4.4495
⇒ a > b > c
∴ The correct answer is option (3).
Identities Question 5:
If x is any natural number, then x3 -
Answer (Detailed Solution Below)
Identities Question 5 Detailed Solution
Given:
If x is any natural number, then x3 - (1/x3) will always be greater than or equal to:
Option 1: 3 × (x - (1/x))
Option 2: 3 × (x + (1/x))
Option 3: x + (1/x)
Option 4: x3 + (1/x3)
Formula used:
For any natural number x, the inequality to verify is:
x3 - (1/x3) ≥ 3 × (x - (1/x))
Calculation:
Let x3 - (1/x3) = (x - (1/x)) × ((x2 + (1/x2)) + 1)
⇒ x3 - (1/x3) = (x - (1/x)) × (x2 + (1/x2) + 1)
Now, observe that x2 + (1/x2) ≥ 2 for all x > 0 (AM-GM inequality).
⇒ x2 + (1/x2) + 1 ≥ 3
⇒ (x - (1/x)) × (x2 + (1/x2) + 1) ≥ 3 × (x - (1/x))
⇒ x3 - (1/x3) ≥ 3 × (x - (1/x))
∴ The correct answer is option 1.
Top Identities MCQ Objective Questions
If x −
Answer (Detailed Solution Below)
Identities Question 6 Detailed Solution
Download Solution PDFGiven:
x - 1/x = 3
Concept used:
a3 - b3 = (a - b)3 + 3ab(a - b)
Calculation:
x3 - 1/x3 = (x - 1/x)3 + 3 × x × 1/x × (x - 1/x)
⇒ (x - 1/x)3 + 3(x - 1/x)
⇒ (3)3 + 3 × (3)
⇒ 27 + 9 = 36
∴ The value of x3 - 1/x3 is 36.
Alternate Method If x - 1/x = a, then x3 - 1/x3 = a3 + 3a
Here a = 3
x - 1/x3 = 33 + 3 × 3
= 27 + 9
= 36
If x = √10 + 3 then find the value of
Answer (Detailed Solution Below)
Identities Question 7 Detailed Solution
Download Solution PDFGiven:
x = √10 + 3
Formula used:
a2 - b2 = (a + b)(a - b)
a3 - b3 = (a - b)(a2 + ab + b2)
Calculation:
⇒ 1/x = √10 - 3
Squaring both side of (1),
∴ The required value is 234.
Shortcut TrickGiven:
x = √10 + 3
Formula used:
⇒
Calculation:
x = √10 + 3
⇒ 1/x = √10 - 3
⇒
⇒
⇒
∴ The required value is 234.
If
Answer (Detailed Solution Below)
Identities Question 8 Detailed Solution
Download Solution PDFGiven:
x - (1/x) = (- 6)
Formula used:
If x - (1/x) = P, then
x + (1/x) = √(P2 + 4)
If x + (1/x) = P, then
x3 + (1/x3) = (P3 - 3P)
x5 - (1/x5) = {x3 + (1/x3)} × {x2 - 1/x2} + {x - (1/x)}
Calculation:
x - (1/x) = (- 6)
x + (1/x) = √{(- 6)2 + 4} = √40 = 2√10
So, x2 - 1/x2 = (x + 1/x) (x - 1/x) = 2√10 × (-6) = -12√10
and x3 + (1/x3) = (√40)3 - 3√40
⇒ 40√40 - 3√40 = 37 × 2√10 = 74√10
Now,
x5 - (1/x5) = {x3 + (1/x3)} × {x2 - 1/x2} + {x - (1/x)}
⇒ {74√10 × (-12√10)} + (- 6)
⇒ - 74 × 12 × (√10 × √10) - 6
⇒ (- 8880) - 6 = - 8886
∴ The correct answer is - 8886.
If p – 1/p = √7, then find the value of p3 – 1/p3.
Answer (Detailed Solution Below)
Identities Question 9 Detailed Solution
Download Solution PDFGiven:
p – 1/p = √7
Formula:
P3 – 1/p3 = (p – 1/p)3 + 3(p – 1/p)
Calculation:
P3 – 1/p3 = (p – 1/p)3 + 3 (p – 1/p)
⇒ p3 – 1/p3 = (√7)3 + 3√7
⇒ p3 – 1/p3 = 7√7 + 3√7
⇒ p3 – 1/p3 = 10√7
Shortcut Trick x - 1/x = a, then x3 - 1/x3 = a3 + 3a
Here, a = √7 ( put the value in required eqn )
⇒p3 – 1/p3 = (√7)3 + 3 × √7 = 7√7 + 3√7
⇒p3 – 1/p3 = 10√7.
Hence; option 4) is correct.
If a + b + c = 14, ab + bc + ca = 47 and abc = 15 then find the value of a3 + b3 +c3.
Answer (Detailed Solution Below)
Identities Question 10 Detailed Solution
Download Solution PDFGiven:
a + b + c = 14, ab + bc + ca = 47 and abc = 15
Concept used:
a³ + b³ + c³ - 3abc = (a + b + c) × [(a + b + c)² - 3(ab + bc + ca)]
Calculations:
a³ + b³ + c³ - 3abc = 14 × [(14)² - 3 × 47]
⇒ a³ + b³ + c³ – 3 × 15 = 14(196 – 141)
⇒ a³ + b³ + c³ = 14(55) + 45
⇒ 770 + 45
⇒ 815
∴ The correct choice is option 1.
If
Answer (Detailed Solution Below)
Identities Question 11 Detailed Solution
Download Solution PDFGiven:
Formula used:
(a + 1/a) = P ; then
(a2 + 1/a2) = P2 - 2
(a3 + 1/a3) = P3 - 3P
Calculation:
a + (1/a) = 7
⇒ (a2 + 1/a2) = (7)2 - 2 = 49 - 2 = 47
⇒ (a3 + 1/a3) = (7)3 - (3 × 7) = 343 - 21 = 322
a5 + (1/a5) = (a2 + 1/a2) × (a3 + 1/a3) - (a + 1/a)
⇒ 47 × 322 - 7
⇒ 15134 - 7 = 15127
∴ The correct answer is 15127.
The sum of values of x satisfying x2/3 + x1/3 = 2 is:
Answer (Detailed Solution Below)
Identities Question 12 Detailed Solution
Download Solution PDFFormula used:
(a + b)3 = a3 + b3 + 3ab(a + b)
Calculation:
⇒ x2/3 + x1/3 = 2
⇒ (x2/3 + x1/3)3 = 23
⇒ x2 + x + 3x(x2/3 + x1/3) = 8
⇒ x2 + 7x - 8 = 0
⇒ x2 + 8x - x - 8 = 0
⇒ x (x + 8) - 1 (x + 8) = 0
⇒ x = - 8 or x = 1
∴ Sum of values of x = -8 + 1 = - 7.If a + b + c = 0, then (a3 + b3 + c3)2 = ?
Answer (Detailed Solution Below)
Identities Question 13 Detailed Solution
Download Solution PDFFormula used:
a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
Calculation:
a + b + c = 0
a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
⇒ a3 + b3 + c3 - 3abc = 0 × (a2 + b2 + c2 - ab - bc - ca) = 0
⇒ a3 + b3 + c3 - 3abc = 0
⇒ a3 + b3 + c3 = 3abc
Now, (a3 + b3 + c3)2 = (3abc)2 = 9a2b2c2
If (a + b + c) = 19 and (a2 + b2 + c2) = 155, find the value of (a - b)2 + (b - c)2 + (c - a)2.
Answer (Detailed Solution Below)
Identities Question 14 Detailed Solution
Download Solution PDFGiven:
(a + b + c) = 19
(a2 + b2 + c2) = 155
Formula used:
a2 + b2 + c2 - (ab + bc + ca) = (1/2) × [(a - b)2 + (b - c)2 + (c - a)2]
Calculation:
a + b + c = 19
Squaring both sides
⇒ (a + b + c)2 = (19)2
⇒ a2 + b2 + c2 + 2 × (ab + bc + ca) = 361
⇒ 155 + 2 × (ab + bc + ca) = 361
⇒ 2 × (ab + bc + ca) = (361 - 155)
⇒ (ab + bc + ca) = 206/2 = 103
Now,
a2 + b2 + c2 - (ab + bc + ca) = (1/2) × [(a - b)2 + (b - c)2 + (c - a)2]
⇒ 2 × (155 - 103) = (a - b)2 + (b - c)2 + (c - a)2
⇒ (a - b)2 + (b - c)2 + (c - a)2 = 104
∴ The correct answer is 104.
If
Answer (Detailed Solution Below)
Identities Question 15 Detailed Solution
Download Solution PDFGiven:
x2 + (1/x2) = 7
Formula used:
x2 + (1/x2) = P
then x + (1/x) = √(P + 2)
and x - (1/x) = √(P - 2)
⇒ x2 - (1/x2) = {x + (1/x)} × {x - (1/x)}
Calculation:
x2 + (1/x2) = 7
⇒ x + (1/x) = √(7 + 2) = √9
⇒ x + (1/x) = 3
⇒ x - (1/x) = -√(7 - 2)
⇒ x - (1/x) = - √5 {0
x2 - (1/x2) = {x + (1/x)} × {x - (1/x)}
⇒ 3 × (- √5)
∴ The correct answer is - 3√5.
Mistake Points
Please note that
0
so
1/x > 1
so
x + 1/x > 1
and
x - 1/x 1 so x - 1/x
so
(x - 1/x)(x + 1/x)