Roots of Unity MCQ Quiz - Objective Question with Answer for Roots of Unity - Download Free PDF

Last updated on Apr 23, 2025

Latest Roots of Unity MCQ Objective Questions

Roots of Unity Question 1:

If ω is an imaginary cube root of unity, then (1 + ω - ω2)5 equals to:

  1. -32
  2. 32
  3. -32ω
  4. 32ω2
  5. 32ω

Answer (Detailed Solution Below)

Option 3 : -32ω

Roots of Unity Question 1 Detailed Solution

Concept

If ω  is an imaginary cube root of unity, we have the following properties: 

  • ω3  = 1
  • 1 + ω + ω2 = 0 ⇒ ω2 = -1 - ω  

 

Calculation

Given that (1 + ω - ω2)5

Now, let's simplify the expression (1 + ω - ω2)

⇒ 1 + ω - (-1 - ω) = 1 + ω + 1 + ω  = 2 + 2ω  = 2(1 + ω) 

Next, we need to evaluate (1 + ω - ω2)5

(1 + ω - ω2)5 = (2(1 + ω))5 

We know that 1 + ω + ω2 = 0,

So 1 + ω = -ω2

Substitute back into the expression

⇒ 

Since 

∴ -32ω10 = -32ω 

Option 3 is correct 

Roots of Unity Question 2:

If ω ≠ 1 is a cube root of unity, then what is (1 + ω - ω2)100 + (1 - ω + ω2)100 equal to?  

  1. 2100 ω2
  2. 2100 ω 
  3. 2100
  4. -2100

Answer (Detailed Solution Below)

Option 4 : -2100

Roots of Unity Question 2 Detailed Solution

Explanation:

(1+ω +ω2)100(1-ω +ω2)100

= (– ω2 – ω2 )100 + (–ω – ω)100  {∵ 1 + ω  + ω2 = 0}

= 2100200 + ω100)

= 21002 + ω)     (∵ ω3 = 1)

= –2100 

∴ Option (d) is correct

Roots of Unity Question 3:

Let integers a, b ∈ [–3, 3] be such that a + b ≠ 0. Then the number of all possible ordered pairs (a, b), for which  and  = 1, z ∈ C, where ω and ω2 are the roots of x2 + x + 1 = 0, is equal to _______.

Answer (Detailed Solution Below) 10

Roots of Unity Question 3 Detailed Solution

a, b ∈ I, –3 ≤ a, b 3, a + b ≠ 0

|z – a| = |z + b|

⇒ z3 = 1

⇒ z = ω , ω2, 1

Now

|1 - a| = |1 + b|

⇒ 10 pair

Roots of Unity Question 4:

If ω is an imaginary cube root of unity, then (1 + ω - ω2)5 equals to:

  1. -32
  2. 32
  3. -32ω
  4. 32ω2

Answer (Detailed Solution Below)

Option 3 : -32ω

Roots of Unity Question 4 Detailed Solution

Concept

If ω  is an imaginary cube root of unity, we have the following properties: 

  • ω3  = 1
  • 1 + ω + ω2 = 0 ⇒ ω2 = -1 - ω  

 

Calculation

Given that (1 + ω - ω2)5

Now, let's simplify the expression (1 + ω - ω2)

⇒ 1 + ω - (-1 - ω) = 1 + ω + 1 + ω  = 2 + 2ω  = 2(1 + ω) 

Next, we need to evaluate (1 + ω - ω2)5

(1 + ω - ω2)5 = (2(1 + ω))5 

We know that 1 + ω + ω2 = 0,

So 1 + ω = -ω2

Substitute back into the expression

⇒ 

Since 

∴ -32ω10 = -32ω 

Option 3 is correct 

Roots of Unity Question 5:

If ω ≠  1 is a cube root of unity, for equation (z - 1)3 + 27 = 0

Statement I: roots are -2, 1 - 3ω, 1 - 3ω2

Statement II: Sum of roots is 0.

Statement III: Product of roots is -26.

Which of the above statement(s) is/are correct.

  1. Only I
  2. I and III
  3. I, II and III
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : I and III

Roots of Unity Question 5 Detailed Solution

Concept:

Cube roots of Unity

Cube roots of unity are given by 1, ω, ω2, where

ω = ω2

Some Results Involving Complex Cube Root of Unity (ω)

(i) ω3 = 1

(ii) 1 + ω + ω2 = 0

(iii) ω2 = 

(iv) ω̅  = ω2

Calculation:

Statement I: roots are -2, 1 - 3ω, 1 - 3ω2

(z -1)3 = - 27

⇒ (z -1) = (- 27)1/3 

⇒ (z -1) = - 3 ⋅ (1)1/3 

⇒ z  =  - 3 ⋅ (1) 1/3  + 1

⇒ z  =  1 - 3 ⋅ (1) 1/3 

Cube root of unity are 1, ω, ω2

For 1, z  =  1 - 3 ⋅ 1 ⇒ z  =  1 - 3 =  - 2

For ω, z  =  1 - 3 ⋅ ω ⇒ z  =  1 - 3ω 

For ω2z  =  1 - 3 ⋅ ω2 ⇒ z  =  1 - 3ω

Statement I is correct.

Statement II: Sum of roots is 0

Roots of the equations (z -1)3 + 27 = 0 are - 2, 1 - 3ω, 1 - 3ω

Sum of roots = (- 2) + (1 - 3ω) + (1 - 3ω2

 = - 3ω - 3ω⇒ - 3(ω + ω2) = -3(-1) = 3

Statement II is incorrect.

Statement III: Product of roots is 1

Product of roots = (-2) (1 - 3ω)(1 - 3ω2)

 = (-2) (1 - 3ω- 3ω + 9ω3)

 = (-2)(10 - 3(ω2 + ω))

 = (-2)(10 + 3)

 = -26

Statement III is correct.

∴ I and III are correct.

Top Roots of Unity MCQ Objective Questions

The value of ω6 +  ω7 + ω5 is

  1. ω5
  2. 1
  3. 0
  4. ω 

Answer (Detailed Solution Below)

Option 3 : 0

Roots of Unity Question 6 Detailed Solution

Download Solution PDF

Concept:

Cube Roots of unity are 1, ω and ω2

Here, ω =  and ω2 = 

 

Property of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω3n = 1

 

Calculation:

ω6 +  ω7 + ω5

= ω5 (ω + ω2 + 1)

= ω5 × (1 + ω + ω2)

= ω5 × 0

= 0

The value of ω3n + ω3n+1 + ω3n+2, where ω is cube roots of unity, is

  1. -1
  2. 1
  3. 0

Answer (Detailed Solution Below)

Option 4 : 0

Roots of Unity Question 7 Detailed Solution

Download Solution PDF

Concept:

Cube Roots of unity are 1, ω and ω2

Here, ω =   and ω2

 

Property of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1

 

Calculation:

We have to find the value of ω3n + ω3n+1 + ω3n+2

⇒ ω3n + ω3n+1 + ω3n+2 

=  ω3n (1 + ω + ω2)           (∵ 1 + ω + ω2 = 0)

= 1 × 0 = 0

If 1, ω,  ω2 are the cube roots of unity then the roots of the equation (x - 1)+ 8 = 0 are

  1. -1, 1 + 2ω1 + 2ω2, 
  2. -1, 1 - 2ω1 - 2ω2
  3. -1, 1, 2
  4. -2, -2ω-2ω2

Answer (Detailed Solution Below)

Option 2 : -1, 1 - 2ω1 - 2ω2

Roots of Unity Question 8 Detailed Solution

Download Solution PDF

Concept 

Cube Roots of unity are 1, ω and ω2

Here, ω =  and ω2 = 

Property of cube roots of unity:

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1

 

Calculation:

Given that,

(x - 1)+ 8 = 0

⇒ (x - 1)3 = (-2)3

⇒ (x - 1) = -2(1)1/3

(x - 1) = -2(1, ω,  ω2)

⇒ x = -1, 1 - 2ω, 1 - 2ω2  

What is ω100 + ω200 + ω300 equal to, where ω is the cube root of unity? 

  1. 1
  2. 2
  3. 0

Answer (Detailed Solution Below)

Option 4 : 0

Roots of Unity Question 9 Detailed Solution

Download Solution PDF

Concept:

Cube Roots of unity are 1, ω and ω2

Here, ω =  and ω2

Property of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1


Calculation:

We have to find the value of ω100 + ω200 + ω300

⇒ ω100 + ω200 + ω300

= ω99 ω + ω198 ω2 + (ω3)100

= (ω3)33 ω + (ω3)66 ω2 + 1     (∵ ω3 = 1)

= ω + ω2 + 1

= 0                       (∵ 1 + ω + ω2 = 0)

What is  equal to, where ω is the cube root of unity?

  1. 1
  2. ω 
  3. ω2
  4. iω, where 

Answer (Detailed Solution Below)

Option 2 : ω 

Roots of Unity Question 10 Detailed Solution

Download Solution PDF

Concept:

Cube Roots of unity are 1, ω and ω2

Here, ω =   and ω2

Property of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ωsum
  • ω3n = 1


Calculation:

We have to find the value of 

As we know that 1 + ω + ω2 = 0

⇒ 1 + ω2 = - ω and 1 + ω = - ω2

Now,

 

The value of ( -1 + i√3 )48 is

  1. 28
  2. 216
  3. 232
  4. 248

Answer (Detailed Solution Below)

Option 4 : 248

Roots of Unity Question 11 Detailed Solution

Download Solution PDF

Concept:

Cube Roots of unity are 1, ω and ω2

Here, ω =    and ω2

Some properties of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0


Calculation:

Given expression is  ( -1 + i√3 )48 

Since,  ω = 

∴ 2ω = -1 + i√3 

∴ (2ω)48 = (-1 + i√3 )48 

∴ (-1 + i√3 )48 = 2483)16

∴ (-1 + i√3 )48 = 248, as  ω3 = 1

Find the value of (1 - ω + ω2)2 + (1 - ω+ ω)2

  1. 2
  2. -2
  3. 4
  4. -4

Answer (Detailed Solution Below)

Option 4 : -4

Roots of Unity Question 12 Detailed Solution

Download Solution PDF

Concept:

1 + ω + ω2 = 0

 ω= 1

 

Calculation:

 (1 - ω + ω2)2 + (1 - ω+ ω)2

⇒ {(1 + ω2) - ω}2 + {(1+ ω) - ω2}2

(- ω - ω)2 + (-ω2 - ω2 )2 ,since 1 + ω + ω2 = 0 

2 + 4ω4

4(ω2 + ω) since, ω= 1

- 4

If α, β, γ are the cube roots of any number p(p  is equal to:

  1. None of these

Answer (Detailed Solution Below)

Option 4 : None of these

Roots of Unity Question 13 Detailed Solution

Download Solution PDF

Concept 

Cube Roots of unity are 1, ω and ω2

Here, ω =  and ω2 = 

Property of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1

Calculation:

Given: α, β, γ are the cube roots

Let z3 = p (p

Let p  = - q where q > 0

⇒  z3 = -q 

So, the roots of the above equation will be, 

Assume α = q, β = qω, γ = qω2

(Because the magnitude of each root will be q)

Now,

            (∵ ω3 = 1)

What is the least possible degree of polynomial with real coefficient having 2ω2, 3 + 4ω, 3 + 4ω2, 5 - ω - ω2 as roots

  1. 4
  2. 8
  3. 5
  4. 3

Answer (Detailed Solution Below)

Option 3 : 5

Roots of Unity Question 14 Detailed Solution

Download Solution PDF

First of all, we should not think that because of the 4 roots, the degree of the polynomial will be 4.

We need to remember that complex roots always occur in pairs.

Now,

Now, to find the value of the given pair roots,

1) 2ω2 = -1 - √3 i

-1 + √3i will also be a root.

2) 3 + 4ω = 3 - 2 + 2√3i

= 1 + 2√3i

1 - 2√3i will also be a root.

3) 3 + 4ω2 = 3 - 2 - 2√3i

= 1 - 2√3i

i.e, 3 + 4ω and 3 + 4ω2 are conjugate pairs.

= 6

i.e. 6 is a root.

Total we have 5 roots.

The minimum degree of the polynomial is 5.

The value of  where n is not a multiple of 3 and , is

  1. 1
  2. -1
  3. i
  4. -i

Answer (Detailed Solution Below)

Option 2 : -1

Roots of Unity Question 15 Detailed Solution

Download Solution PDF

Concept:

  • ω =  and ω2 =  where ω is cube root of unity.

 

Calculation:

Given that,

 where n is not a multiple of 3.

Here n is not a multiple of 3 so,

Put n = 3k + 1 where k is integer k =1, 2, 3 …..

⇒ -1

Hot Links: teen patti wink teen patti joy vip teen patti game paisa wala teen patti gold download