Roots of Unity MCQ Quiz - Objective Question with Answer for Roots of Unity - Download Free PDF
Last updated on Apr 23, 2025
Latest Roots of Unity MCQ Objective Questions
Roots of Unity Question 1:
If ω is an imaginary cube root of unity, then (1 + ω - ω2)5 equals to:
Answer (Detailed Solution Below)
Roots of Unity Question 1 Detailed Solution
Concept
If ω is an imaginary cube root of unity, we have the following properties:
- ω3 = 1
- 1 + ω + ω2 = 0 ⇒ ω2 = -1 - ω
Calculation
Given that (1 + ω - ω2)5
Now, let's simplify the expression (1 + ω - ω2)
⇒ 1 + ω - (-1 - ω) = 1 + ω + 1 + ω = 2 + 2ω = 2(1 + ω)
Next, we need to evaluate (1 + ω - ω2)5
(1 + ω - ω2)5 = (2(1 + ω))5
We know that 1 + ω + ω2 = 0,
So 1 + ω = -ω2
Substitute back into the expression
⇒ \((2 \cdot (-ω^2))^5 =(-2ω^2)^5 =((-2)^5 \cdot (ω^2)^5) = -32 \cdot ω^{10} \)
Since \(ω^3 = 1 \implies ω^9 = 1\implies ω^{10} = ω \)
∴ -32ω10 = -32ω
∴ Option 3 is correct
Roots of Unity Question 2:
If ω ≠ 1 is a cube root of unity, then what is (1 + ω - ω2)100 + (1 - ω + ω2)100 equal to?
Answer (Detailed Solution Below)
Roots of Unity Question 2 Detailed Solution
Explanation:
(1+ω +ω2)100+ (1-ω +ω2)100
= (– ω2 – ω2 )100 + (–ω – ω)100 {∵ 1 + ω + ω2 = 0}
= 2100(ω200 + ω100)
= 2100(ω2 + ω) (∵ ω3 = 1)
= –2100
∴ Option (d) is correct
Roots of Unity Question 3:
Let integers a, b ∈ [–3, 3] be such that a + b ≠ 0. Then the number of all possible ordered pairs (a, b), for which \(\left|\frac{z-a}{z+b}\right|=1 \) and \(\left|\begin{array}{ccc} z+1 & \omega & \omega^{2} \\ \omega & z+\omega^{2} & 1 \\ \omega^{2} & 1 & z+\omega \end{array}\right|\) = 1, z ∈ C, where ω and ω2 are the roots of x2 + x + 1 = 0, is equal to _______.
Answer (Detailed Solution Below) 10
Roots of Unity Question 3 Detailed Solution
a, b ∈ I, –3 ≤ a, b ≤ 3, a + b ≠ 0
|z – a| = |z + b|
\(\left|\begin{array}{ccc} z+1 & \omega & \omega^{2} \\ \omega & z+\omega^{2} & 1 \\ \omega^{2} & 1 & z+\omega \end{array}\right|=1 \)
\(\Rightarrow\left|\begin{array}{ccc} z & z & z \\ \omega & z+\omega^{2} & 1 \\ \omega^{2} & 1 & z+\omega \end{array}\right|=1\)
\( \Rightarrow z\left|\begin{array}{ccc} 1 & 1 & 1 \\ \omega & z+\omega^{2} & 1 \\ \omega^{2} & 1 & z+\omega \end{array}\right|=1\)
\(\Rightarrow z\left|\begin{array}{ccc} 1 & 0 & 0 \\ \omega & z+\omega^{2}-\omega & 1-\omega \\ \omega^{2} & 1-\omega^{2} & z+\omega-\omega^{2} \end{array}\right|=1\)
⇒ z3 = 1
⇒ z = ω , ω2, 1
Now
|1 - a| = |1 + b|
⇒ 10 pair
Roots of Unity Question 4:
If ω is an imaginary cube root of unity, then (1 + ω - ω2)5 equals to:
Answer (Detailed Solution Below)
Roots of Unity Question 4 Detailed Solution
Concept
If ω is an imaginary cube root of unity, we have the following properties:
- ω3 = 1
- 1 + ω + ω2 = 0 ⇒ ω2 = -1 - ω
Calculation
Given that (1 + ω - ω2)5
Now, let's simplify the expression (1 + ω - ω2)
⇒ 1 + ω - (-1 - ω) = 1 + ω + 1 + ω = 2 + 2ω = 2(1 + ω)
Next, we need to evaluate (1 + ω - ω2)5
(1 + ω - ω2)5 = (2(1 + ω))5
We know that 1 + ω + ω2 = 0,
So 1 + ω = -ω2
Substitute back into the expression
⇒ \((2 \cdot (-ω^2))^5 =(-2ω^2)^5 =((-2)^5 \cdot (ω^2)^5) = -32 \cdot ω^{10} \)
Since \(ω^3 = 1 \implies ω^9 = 1\implies ω^{10} = ω \)
∴ -32ω10 = -32ω
∴ Option 3 is correct
Roots of Unity Question 5:
If ω ≠ 1 is a cube root of unity, for equation (z - 1)3 + 27 = 0
Statement I: roots are -2, 1 - 3ω, 1 - 3ω2
Statement II: Sum of roots is 0.
Statement III: Product of roots is -26.
Which of the above statement(s) is/are correct.
Answer (Detailed Solution Below)
Roots of Unity Question 5 Detailed Solution
Concept:
Cube roots of Unity
Cube roots of unity are given by 1, ω, ω2, where
ω = \(\frac{-1+\sqrt3}{2}\), ω2 = \(\frac{-1-\sqrt3}{2}\)
Some Results Involving Complex Cube Root of Unity (ω)
(i) ω3 = 1
(ii) 1 + ω + ω2 = 0
(iii) ω2 = \(\frac{1}{ω}\)
(iv) ω̅ = ω2
Calculation:
Statement I: roots are -2, 1 - 3ω, 1 - 3ω2
(z -1)3 = - 27
⇒ (z -1) = (- 27)1/3
⇒ (z -1) = - 3 ⋅ (1)1/3
⇒ z = - 3 ⋅ (1) 1/3 + 1
⇒ z = 1 - 3 ⋅ (1) 1/3
Cube root of unity are 1, ω, ω2
For 1, z = 1 - 3 ⋅ 1 ⇒ z = 1 - 3 = - 2
For ω, z = 1 - 3 ⋅ ω ⇒ z = 1 - 3ω
For ω2, z = 1 - 3 ⋅ ω2 ⇒ z = 1 - 3ω2
Statement I is correct.
Statement II: Sum of roots is 0
Roots of the equations (z -1)3 + 27 = 0 are - 2, 1 - 3ω, 1 - 3ω2
Sum of roots = (- 2) + (1 - 3ω) + (1 - 3ω2)
= - 3ω - 3ω2 ⇒ - 3(ω + ω2) = -3(-1) = 3
Statement II is incorrect.
Statement III: Product of roots is 1
Product of roots = (-2) (1 - 3ω)(1 - 3ω2)
= (-2) (1 - 3ω2 - 3ω + 9ω3)
= (-2)(10 - 3(ω2 + ω))
= (-2)(10 + 3)
= -26
Statement III is correct.
∴ I and III are correct.
Top Roots of Unity MCQ Objective Questions
The value of ω6 + ω7 + ω5 is
Answer (Detailed Solution Below)
Roots of Unity Question 6 Detailed Solution
Download Solution PDFConcept:
Cube Roots of unity are 1, ω and ω2
Here, ω = \(\frac{{ - {\rm{\;}}1{\rm{\;}} + {\rm{\;i}}\sqrt 3 }}{2}\) and ω2 = \(\frac{{ - {\rm{\;}}1{\rm{\;}} - {\rm{\;i}}\sqrt 3 }}{2}\)
Property of cube roots of unity
- ω3 = 1
- 1 + ω + ω2 = 0
- ω3n = 1
Calculation:
ω6 + ω7 + ω5
= ω5 (ω + ω2 + 1)
= ω5 × (1 + ω + ω2)
= ω5 × 0
= 0
The value of ω3n + ω3n+1 + ω3n+2, where ω is cube roots of unity, is
Answer (Detailed Solution Below)
Roots of Unity Question 7 Detailed Solution
Download Solution PDFConcept:
Cube Roots of unity are 1, ω and ω2
Here, ω = \(\frac{{ - {\rm{\;}}1{\rm{\;}} + {\rm{\;\;i}}\sqrt 3 }}{2}\) and ω2 = \(\frac{{ - {\rm{\;}}1{\rm{\;}} - {\rm{\;\;i}}\sqrt 3 }}{2}\)
Property of cube roots of unity
- ω3 = 1
- 1 + ω + ω2 = 0
- ω = 1 / ω 2 and ω2 = 1 / ω
- ω3n = 1
Calculation:
We have to find the value of ω3n + ω3n+1 + ω3n+2
⇒ ω3n + ω3n+1 + ω3n+2
= ω3n (1 + ω + ω2) (∵ 1 + ω + ω2 = 0)
= 1 × 0 = 0
If 1, ω, ω2 are the cube roots of unity then the roots of the equation (x - 1)3 + 8 = 0 are
Answer (Detailed Solution Below)
Roots of Unity Question 8 Detailed Solution
Download Solution PDFConcept
Cube Roots of unity are 1, ω and ω2
Here, ω = \(\frac{{ - \;1\; + \;i\sqrt 3 }}{2}\) and ω2 = \(\frac{{ - \;1\; - \;i\sqrt 3 }}{2}\)
Property of cube roots of unity:
- ω3 = 1
- 1 + ω + ω2 = 0
- ω = 1 / ω 2 and ω2 = 1 / ω
- ω3n = 1
Calculation:
Given that,
(x - 1)3 + 8 = 0
⇒ (x - 1)3 = (-2)3
⇒ (x - 1) = -2(1)1/3
(x - 1) = -2(1, ω, ω2)
⇒ x = -1, 1 - 2ω, 1 - 2ω2
What is ω100 + ω200 + ω300 equal to, where ω is the cube root of unity?
Answer (Detailed Solution Below)
Roots of Unity Question 9 Detailed Solution
Download Solution PDFConcept:
Cube Roots of unity are 1, ω and ω2
Here, ω = \(\frac{{ - {\rm{\;}}1{\rm{\;}} + {\rm{\;\;i}}\sqrt 3 }}{2}\) and ω2 = \(\frac{{ - {\rm{\;}}1{\rm{\;}} - {\rm{\;\;i}}\sqrt 3 }}{2}\)
Property of cube roots of unity
- ω3 = 1
- 1 + ω + ω2 = 0
- ω = 1 / ω 2 and ω2 = 1 / ω
- ω3n = 1
Calculation:
We have to find the value of ω100 + ω200 + ω300
⇒ ω100 + ω200 + ω300
= ω99 ω + ω198 ω2 + (ω3)100
= (ω3)33 ω + (ω3)66 ω2 + 1 (∵ ω3 = 1)
= ω + ω2 + 1
= 0 (∵ 1 + ω + ω2 = 0)
What is \(\sqrt {\frac{{1 + {{\rm{\omega }}^2}}}{{1 + {\rm{\omega }}}}} \) equal to, where ω is the cube root of unity?
Answer (Detailed Solution Below)
Roots of Unity Question 10 Detailed Solution
Download Solution PDFConcept:
Cube Roots of unity are 1, ω and ω2
Here, ω = \(\frac{{ - {\rm{\;}}1{\rm{\;}} + {\rm{\;\;i}}\sqrt 3 }}{2}\) and ω2 = \(\frac{{ - {\rm{\;}}1{\rm{\;}} - {\rm{\;\;i}}\sqrt 3 }}{2}\)
Property of cube roots of unity
- ω3 = 1
- 1 + ω + ω2 = 0
- ω = 1 / ω 2 and ω2 = 1 / ωsum
- ω3n = 1
Calculation:
We have to find the value of \(\sqrt {\frac{{1 + {{\rm{\omega }}^2}}}{{1 + {\rm{\omega }}}}}\)
As we know that 1 + ω + ω2 = 0
⇒ 1 + ω2 = - ω and 1 + ω = - ω2
Now,
\(\sqrt {\frac{{1 + {{\rm{\omega }}^2}}}{{1 + {\rm{\omega }}}}} = {\rm{\;}}\sqrt {\frac{{ - {\rm{\omega }}}}{{ - {{\rm{\omega }}^2}}}} = {\rm{\;}}\sqrt {\frac{1}{{\rm{\omega }}} \times \frac{{{{\rm{\omega }}^2}}}{{{{\rm{\omega }}^2}}}} = \sqrt {\frac{{{{\rm{\omega }}^2}}}{{{{\rm{\omega }}^3}}}} = \sqrt {{{\rm{\omega }}^2}} = {\rm{\;}}{{\rm{\omega }}}\)
The value of ( -1 + i√3 )48 is
Answer (Detailed Solution Below)
Roots of Unity Question 11 Detailed Solution
Download Solution PDFConcept:
Cube Roots of unity are 1, ω and ω2
Here, ω = \(\rm(- 1 + i√3)\over2\) and ω2 = \(\rm(- 1 - i√3)\over2\)
Some properties of cube roots of unity
- ω3 = 1
- 1 + ω + ω2 = 0
Calculation:
Given expression is ( -1 + i√3 )48
Since, ω = \(\rm(- 1 + i√3)\over2\)
∴ 2ω = -1 + i√3
∴ (2ω)48 = (-1 + i√3 )48
∴ (-1 + i√3 )48 = 248(ω3)16
∴ (-1 + i√3 )48 = 248, as ω3 = 1
Find the value of (1 - ω + ω2)2 + (1 - ω2 + ω)2
Answer (Detailed Solution Below)
Roots of Unity Question 12 Detailed Solution
Download Solution PDFConcept:
1 + ω + ω2 = 0
ω3 = 1
Calculation:
(1 - ω + ω2)2 + (1 - ω2 + ω)2
⇒ {(1 + ω2) - ω}2 + {(1+ ω) - ω2}2
⇒ (- ω - ω)2 + (-ω2 - ω2 )2 ,since 1 + ω + ω2 = 0
⇒ 4ω2 + 4ω4
⇒ 4(ω2 + ω) since, ω3 = 1
⇒ - 4
If α, β, γ are the cube roots of any number p(p < 0), then for any three numbers x, y, z; \(\rm \frac {x\alpha + y\beta + z\gamma}{x\beta + y\gamma + z\alpha}\) is equal to:
Answer (Detailed Solution Below)
Roots of Unity Question 13 Detailed Solution
Download Solution PDFConcept
Cube Roots of unity are 1, ω and ω2
Here, ω = \(\frac{{ - \;1\; + \;i\sqrt 3 }}{2}\) and ω2 = \(\frac{{ - \;1\; - \;i\sqrt 3 }}{2}\)
Property of cube roots of unity
- ω3 = 1
- 1 + ω + ω2 = 0
- ω = 1 / ω 2 and ω2 = 1 / ω
- ω3n = 1
Calculation:
Given: α, β, γ are the cube roots
Let z3 = p (p < 0)
Let p = - q where q > 0
⇒ z3 = -q
So, the roots of the above equation will be,
Assume α = q, β = qω, γ = qω2
(Because the magnitude of each root will be q)
Now,
\(\rm \frac {x\alpha + y\beta + z\gamma}{x\beta + y\gamma + z\alpha}\)
\(=\rm \frac {p(x + yω+ zω^2)}{p(xω + yω^2 + z)}\)
\(=\rm \frac {x + yω+ zω^2}{xω + yω^2 + z} \times \frac{ω}{ω}\\\)
\(=\rm \frac{1}{ω} \times \frac {xω + yω^2 + zω^3}{xω + yω^2 + z}\)
\(=\rm \frac{1}{ω} \times \frac {xω + yω^2 + z}{xω + yω^2 + z}\) (∵ ω3 = 1)
\(=\rm \frac{1}{\omega} \\ = \rm \omega^2\)
\(=\frac{{ - \;1\; - \;i\sqrt 3 }}{2}\)
What is the least possible degree of polynomial with real coefficient having 2ω2, 3 + 4ω, 3 + 4ω2, 5 - ω - ω2 as roots
Answer (Detailed Solution Below)
Roots of Unity Question 14 Detailed Solution
Download Solution PDFFirst of all, we should not think that because of the 4 roots, the degree of the polynomial will be 4.
We need to remember that complex roots always occur in pairs.
Now,
\(ω = {\cos \frac{2\pi}{3}}+{i \sin \frac{2\pi}{3}}\)
\(= - \frac{1}{2} + \frac{√ 3}{2} i\)
\(ω^2 = \cos \frac{4 \pi}{3} + i \sin \frac{4 \pi}{3}\)
\(= - \frac{1}{2} - \frac{√ 3}{2} i\)
Now, to find the value of the given pair roots,
1) 2ω2 = -1 - √3 i
∴ -1 + √3i will also be a root.
2) 3 + 4ω = 3 - 2 + 2√3i
= 1 + 2√3i
∴ 1 - 2√3i will also be a root.
3) 3 + 4ω2 = 3 - 2 - 2√3i
= 1 - 2√3i
i.e, 3 + 4ω and 3 + 4ω2 are conjugate pairs.
\(4) ~5 - \omega - \omega^2 = 5 + \frac{1}{2} - \frac{\sqrt 3}{2}i + \frac{1}{2} + \frac{\sqrt 3}{2}i\)
= 6
i.e. 6 is a root.
Total we have 5 roots.
The minimum degree of the polynomial is 5.
The value of \({\left( {\frac{{ - 1 + {\rm{i}}\sqrt 3 }}{2}} \right)^{\rm{n}}} + {\left( {\frac{{ - 1 - {\rm{i}}\sqrt 3 }}{2}} \right)^{\rm{n}}}\) where n is not a multiple of 3 and \({\rm{i}} = \sqrt { - 1}\), is
Answer (Detailed Solution Below)
Roots of Unity Question 15 Detailed Solution
Download Solution PDFConcept:
- ω = \(\frac{{ - 1 + {\rm{i}}\sqrt 3 }}{2}\) and ω2 = \(\frac{{ - 1 - {\rm{i}}\sqrt 3 }}{2}\) where ω is cube root of unity.
- \({{\rm{\omega }}^{3{\rm{k}}}} = 1,{\rm{\;}}{{\rm{\omega }}^{\left( {3{\rm{k}} + 1} \right)}} = {\rm{\;\omega \;and\;}}{{\rm{\omega }}^{\left( {3{\rm{k}} + 2} \right)}} = {\rm{\;}}{{\rm{\omega }}^2}\)
- \(1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0\)
Calculation:
Given that,
\({\left( {\frac{{ - 1 + {\rm{i}}\sqrt 3 }}{2}} \right)^{\rm{n}}} + {\left( {\frac{{ - 1 - {\rm{i}}\sqrt 3 }}{2}} \right)^{\rm{n}}}\) where n is not a multiple of 3.
\(\Rightarrow {{\rm{\omega }}^{\rm{n}}} + {\rm{}}{{\rm{\omega }}^{2{\rm{n}}}}{\rm{}}\left[ {{\rm{}}{\rm{\omega }} = {\rm{}}\frac{{ - 1 + {\rm{i}}\sqrt {3,} }}{2},{\rm{\;}}{{\rm{\omega }}^2}{\rm{}} = {\rm{}}\frac{{ - 1 - {\rm{i}}\sqrt 3 }}{2}{\rm{}}} \right]\)
Here n is not a multiple of 3 so,
Put n = 3k + 1 where k is integer k =1, 2, 3 …..
\(\Rightarrow {{\rm{\omega }}^{3{\rm{k}} + 1}} + {{\rm{\omega }}^{6{\rm{k}} + 2}}\)
\(\Rightarrow {{\rm{\omega }}^{3{\rm{k}}}}.{{\rm{\omega }}^1} + {{\rm{\omega }}^{6{\rm{k}}}}.{{\rm{\omega }}^2}\left[ {{{\because\rm{\omega }}^{3{\rm{k}}}} = 1} \right]\)
\( \Rightarrow {\rm{\omega }} + {{\rm{\omega }}^2}\left[ {\because 1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0} \right]\)
⇒ -1