Solution of Differential Equations MCQ Quiz - Objective Question with Answer for Solution of Differential Equations - Download Free PDF
Last updated on Apr 22, 2025
Latest Solution of Differential Equations MCQ Objective Questions
Solution of Differential Equations Question 1:
The general solution of the differential equation \(x \frac{d y}{d x}=y+x \tan \left(\frac{y}{x}\right)\) is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 1 Detailed Solution
Calculation
Given equation: \(x\frac{dy}{dx} = y + x \tan(\frac{y}{x})\)
Divide by x: \(\frac{dy}{dx} = \frac{y}{x} + \tan(\frac{y}{x})\)
Let y = vx, then \(\frac{dy}{dx} = v + x\frac{dv}{dx}\)
Substitute in the equation:
\(v + x\frac{dv}{dx} = v + \tan(v)\)
⇒ \(x\frac{dv}{dx} = \tan(v)\)
⇒ \(\frac{dv}{\tan(v)} = \frac{dx}{x}\)
⇒ \(\cot(v) dv = \frac{dx}{x}\)
Integrate both sides:
\(\int \cot(v) dv = \int \frac{dx}{x}\)
⇒ \(\ln|\sin(v)| = \ln|x| + \ln|C|\)
⇒ \(\ln|\sin(v)| = \ln|Cx|\)
Remove the logarithms:
⇒ \(\sin(v) = Cx\)
Substitute v = y/x:
⇒ \(\sin(\frac{y}{x}) = Cx\)
∴ The general solution is \(\sin(\frac{y}{x}) = Cx\).
Hence option 2 is correct
Solution of Differential Equations Question 2:
The function \(y = f(x)\) is the solution of the differential equation \(\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^4 + 2x}{\sqrt{1 - x^2}}\) in \((-1, 1)\) satisfying \(f(0) = 0\). Then \(\int_{- \frac{\sqrt{3}}{2}}^{ \frac{\sqrt{3}}{2}} f(x)dx\) is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 2 Detailed Solution
This is a linear differential equation
I.F. \(= e^{\int \dfrac{x}{x^2 -1}dx} = e^{\dfrac{1}{2} ln |x^2 -1|} = \sqrt{1 - x^2}\)
\(\Rightarrow \) solution is
\(y\sqrt{1 - x^2}=\int \dfrac{x(x^3 +2)}{\sqrt{1 - x^2}} \cdot \sqrt{1 -x^2}dx\)
or \( y \sqrt{1 -x^2} = \int (x^4 +2x)dx = \sqrt{x^5}{5} + x^2 +c\)
\(f(0) = 0 \Rightarrow c = 0\)
\(\Rightarrow f(x) \sqrt{1 - x^2} = \dfrac{x^5}{5} + x^2\)
Now,
\(\int_{- \sqrt{3}/ 2}^{\sqrt{3} / 2} f(x) dx = \int_{\sqrt{3}/2}^{\sqrt{3}/2} d\dfrac{x^2}{\sqrt{1- x^2}}dx\) (Using property)
\(= 2 \int_{0}^{\sqrt{3}/2} \dfrac{x^2}{\sqrt{1 -x^2}} dx = 2 \int_0^{\pi/ 3} \dfrac{sin^2 \theta}{cos \theta} cos \theta d \theta\) (Taking \( x = sin \theta\))
\(= 2 \int_{0}^{\pi / 3} sin^2 \theta d \theta = 2 \left [ \frac{\theta}{2} - \frac{sin 2 \theta}{4} \right]_0^{\frac{\pi}{3}} = 2 \left ( \frac{\pi}{6} \right ) - 2 \left ( \frac{\sqrt{3}}{8} \right ) = \frac{\pi}{3} - \frac{\sqrt{3}}{4}\)
Solution of Differential Equations Question 3:
Let y = y(x) be the solution of the differential equation \(\rm (1+x^2)\frac{dy}{dx}+y=e^{\tan^{-1}x}, y(1)=0\) Then y(0) is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 3 Detailed Solution
Concept:
The solution of first order differential equation \(\frac{dy}{dx}+Py=Q\) is given by y × IF = \(\int Q\times IF \ dx\), where IF = Integrating Factor = \(e^{\int P \ dx}\)
Calculation:
Given, \(\rm (1+x^2)\frac{dy}{dx}+y=e^{\tan^{-1}x}\)
⇒ \(\frac{d y}{d x}+\frac{y}{1+x^2}=\frac{e^{\tan ^{-1} x}}{1+x^2}\)
∴ I.F. = \(e^{\int \frac{1}{1+x^2} d x}=e^{\tan ^{-1} x}\)
∴ \(\rm y \cdot e^{\tan ^{-1} x}=\int\left(\frac{e^{\tan ^{-1} x}}{1+x^2}\right) e^{\tan ^{-1} x} \cdot \rm d x\)
Let tan–1 x = z ⇒ \(\frac{\mathrm{dx}}{1+\mathrm{x}^2}=\mathrm{dz}\)
∴ yez = \(\int \mathrm{e}^{2 \mathrm{z}} \mathrm{dz}=\frac{\mathrm{e}^{2 \mathrm{z}}}{2}+\mathrm{C}\)
⇒ \(\rm y . e^{\tan ^{-1} x}=\frac{e^{2 \tan ^{-1} x}}{2}+C\)
⇒ \(\rm y=\frac{e^{\tan ^{-1} x}}{2}+\frac{C}{e^{\tan ^{-1} x}}\)
Now, y(1) = 0
⇒ 0 = \(\frac{\mathrm{e}^{\pi / 4}}{2}+\frac{\mathrm{C}}{\mathrm{e}^{\pi / 4}}\)
⇒ C = \(\frac{-\mathrm{e}^{\pi / 2}}{2}\)
∴ \(\rm y=\frac{e^{\tan ^{-1} x}}{2}-\frac{e^{\pi / 2}}{2 e^{\tan ^{-1} x}}\)
⇒ y(0) = \(\frac{1-\mathrm{e}^{\pi / 2}}{2}\)
∴ The value of y(0) is \(\frac{1-\mathrm{e}^{\pi / 2}}{2}\).
The correct answer is Option 2.
Solution of Differential Equations Question 4:
The general solution of differential equation \( \cfrac { dx }{ dy } =\cos { \left( x+y \right) } \) is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 4 Detailed Solution
Calculation
\( \cfrac { dx }{ dy } =\cos { \left( x+y \right) } \)
Let \( x+y=v \implies \dfrac{dx}{dy}+1=\dfrac{dv}{dy} \)
⇒ \( \dfrac{dv}{dy}=1+\cos{v}=2\cos^2{\dfrac{v}{2}} \)
\(\Rightarrow \dfrac{dv}{\cos^2{\dfrac{v}{2}}}=2dy \)
⇒ \( \sec^2{\dfrac{v}{2}}dv=2dy \)
Integrating both sides:-
⇒ \( 2\tan{\dfrac{v}{2}}=2y+k \)
⇒ \( \tan{\left(\dfrac{x+y}{2}\right)}=y+c \)
Hence, option 1 is correct
Solution of Differential Equations Question 5:
The solution of the differential equation \(\dfrac {dy}{dx} = \tan \left (\dfrac {y}{x}\right ) + \dfrac {y}{x}\) is:
Answer (Detailed Solution Below)
Solution of Differential Equations Question 5 Detailed Solution
Calculation
\(\dfrac {dy}{dx} = \tan \left (\dfrac {y}{x}\right ) + \left (\dfrac {y}{x}\right )\) ..... \((i)\)
Take, \(\dfrac {y}{x} = v\)
\(\implies y = vx\)
\(\implies \dfrac {dy}{dx} = v + x\dfrac {dv}{dx}\)
\(\therefore\) The given equation \((i)\) becomes
\(v + x\dfrac {dv}{dx} = \tan v + v\)
\(\implies \dfrac {1}{\tan v}dv = \dfrac {1}{x}dx\)
\(\implies \displaystyle \int \cot v\ dv = \int \dfrac {1}{x}dx\)
\(\implies \log |\sin v| = \log x + \log c=\log|xc|\)
\(\implies \sin v = xc\)
\(\therefore \sin \left (\dfrac {y}{x}\right ) = xc\)
Hence option 2 is correct
Top Solution of Differential Equations MCQ Objective Questions
The solution of the differential equation dy = (1 + y2) dx is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 6 Detailed Solution
Download Solution PDFConcept:
\(\rm \displaystyle \int \frac{dx}{1+x^2} = \tan^{-1} x + c\)
Calculation:
Given: dy = (1 + y2) dx
\(\rm \Rightarrow \frac{dy}{1+y^2}=dx\)
Integrating both sides, we get
\(\rm \Rightarrow \displaystyle \int \frac{dy}{1+y^2}=\displaystyle \int dx\\\rm \Rightarrow \tan^{-1} y = x + c \)
⇒ y = tan (x + c)
∴ The solution of the given differential equation is y = tan (x + c).
If x2 + y2 + z2 = xy + yz + zx and x = 1, then find the value of \(\rm \frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}\)
Answer (Detailed Solution Below)
Solution of Differential Equations Question 7 Detailed Solution
Download Solution PDFGiven:
x = 1
x2 + y2 + z2 = xy + yz + zx
Calculations:
x2 + y2 + z2 - xy - yz - zx = 0
⇒(1/2)[(x - y)2 + (y - z)2 + (z - x)2] = 0
⇒x = y , y = z and z = x
But x = y = z = 1
so, \(\rm \frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}\)
= {10(1)4 + 5(1)4 + 7(1)4}/{13(1)2(1)2+ 6(1)2(1)2 + 3(1)2(1)2}
= 22/22
= 1
Hence, the required value is 1.
What is the solution of the differential equation \(\ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) - {\rm{a}} = 0?\)
Answer (Detailed Solution Below)
Solution of Differential Equations Question 8 Detailed Solution
Download Solution PDFCalculation:
Given: \(\ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) - {\rm{a}} = 0\)
\( \Rightarrow \ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) = {\rm{a}}\)
\(\Rightarrow \frac{{{\rm{dy}}}}{{{\rm{dx}}}} = {{\rm{e}}^{\rm{a}}}\)
\(\Rightarrow {\rm{\;}}\smallint \frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \smallint {{\rm{e}}^{\rm{a}}}\)
On integrating both sides, we get
⇒ y = xea + c
Find general solution of \(\rm\left( xy \frac {dy}{dx} -1 \right)= 0\)
Answer (Detailed Solution Below)
Solution of Differential Equations Question 9 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{1}{x}dx = \log x + c\)
\(\rm \int x^ndx = \frac{x^{n+1}}{n+1} + c\)
Calculation:
Given: \(\rm\left( xy \frac {dy}{dx} -1 \right)= 0\)
\(\Rightarrow \rm xy \frac {dy}{dx} =1 \)
\(\Rightarrow \rm y \;dy=\frac {dx}{x} \)
Integrating both sides, we get
\(\rm \Rightarrow \frac{y^2}{2} = \log x + c\)
If x + \(\frac{1}{2x}\) = 3, then evaluate 8x3 + \(\rm \frac{1}{x^3}\).
Answer (Detailed Solution Below)
Solution of Differential Equations Question 10 Detailed Solution
Download Solution PDFGiven:
x + \(\frac{1}{2x}\) = 3
Concept Used:
Simple calculations is used
Calculations:
⇒ x + \(\frac{1}{2x}\) = 3
On multiplying 2 on both sides, we get
⇒ 2x + \(\frac{1}{x}\) = 6 .................(1)
Now, On cubing both sides,
⇒ \((2x + \frac{1}{x})^3 = 6^3\)
⇒ \(8x^3 + \frac{1}{x^3} + 3(4x^2)(\frac{1}{x})+3(2x)(\frac{1}{x^2})=216\)
⇒ \(8x^3 + \frac{1}{x^3} + 12x+\frac{6}{x}=216\)
⇒ \(8x^3 + \frac{1}{x^3}= 216 - 6(2x+\frac{1}{x})\)
⇒ \(8x^3 + \frac{1}{x^3}= 216- 6(6)\) ..............from (1)
⇒ \(8x^3 + \frac{1}{x^3}= 216- 36\)
⇒ \(8x^3 + \frac{1}{x^3}= 180\)
⇒ Hence, The value of the above equation is 180
The solution of differential equation \(\rm dy = \left ( 4 + y^{2} \right )dx\) is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 11 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{1}{a^{2}+x^{2}}dx = \frac{1}{a}\tan ^{-1}\frac{x}{a}+ C\)
Calculation:
Given : \(\rm dy = \left ( 4 + y^{2} \right )dx\)
⇒ \(\rm \frac{dy}{4+y^{2}}= dx\)
Integrating both sides, we get
\(\rm \int \frac{dy}{2^{2}+y^{2}}= \int dx\)
⇒ \(\rm \frac{1}{2}\tan^{-1}\frac{y}{2}= x+c\)
⇒ \(\rm \tan^{-1}\frac{y}{2}= 2x+ 2c\)
⇒ \(\rm \tan^{-1}\frac{y}{2}= 2x+ C\) [∵ 2c = C]
⇒ \(\rm \frac{y}{2}= \tan(2x+ C)\)
\(\rm y = 2\tan \left ( 2x+C \right )\)
The correct option is 2 .
The solution of \(\rm {dx\over dt}= 3x+8\) will be
Answer (Detailed Solution Below)
Solution of Differential Equations Question 12 Detailed Solution
Download Solution PDFConcept:
Some useful formulas are:
\(\rm \int{dx\over ax}={1\over a}logx+c\)
If log x = z then we can write x = ez
Calculation:
\(\rm {dx\over dt}= 3x+8\)
Rearranging the equation and integrating we get,
⇒\(\rm \int{dx\over 3x+8}=\int dt\)
⇒\(\rm {1\over 3 }log({3x+8})=t+c\), c = constant of integration
⇒ log(3x + 8) = 3(t + c)
⇒ 3x + 8 = e3(t+c)
⇒ 3x = e3(t+c) - 8
∴ \(\rm x ={ 1\over 3}e^{3(t+c)}-{8\over 3}\)
The solution of the differential equation dy = \(\rm \sqrt{1-y^2}\) dx is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 13 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{dx}{\sqrt{a^{2}-x^{2}}}= sin^{-1}\frac{x}{a}\)
Calculation:
Given: dy = \(\rm \sqrt{1-y^2}\) dx
⇒ \(\rm \frac{dy}{\sqrt{1^{2}-y^{2}}} = dx\)
Integrating both sides, we get
⇒ \(\rm \int \frac{dy}{\sqrt{1^{2}-y^{2}}} =\int dx\)
⇒ \(\rm sin^{-1}\left ( y \right )\) = x + c
⇒ y = sin ( x + c ) .
The correct option is 2.
Find general solution of \(\rm \frac{dx}{dy} = (1+x^2)(1+y^2)\)
Answer (Detailed Solution Below)
Solution of Differential Equations Question 14 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{1}{a^2+x^2}dx = \frac{1}{a}\tan^{-1}\frac{x}{a} + c\)
\(\rm \int x^ndx = \frac{x^{n+1}}{n+1} + c\)
Calculation:
Given: \(\rm \frac{dx}{dy} = (1+x^2)(1+y^2)\)
\(\rm \Rightarrow \frac{dx}{(1+x^2)} = (1+y^2)dy\)
\(\rm \Rightarrow (1+y^2)dy=\frac{dx}{(1+x^2)} \)
Integrating both sides, we get
\(\rm \Rightarrow \int (1+y^2)dy=\int \frac{dx}{(1+x^2)} \)
\(\rm \Rightarrow y+\frac{y^3}{3} = \tan^{-1}x + c\)
The solution of the differential equation \(\rm y \frac {dy}{dx} \) = x + 1 is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 15 Detailed Solution
Download Solution PDFCalculation:
Given: \(\rm y \frac {dy}{dx} = x + 1\)
⇒ ydy = (x + 1) dx
Integrating both sides, we get
⇒ ∫ ydy = ∫ (x + 1) dx
⇒ \(\rm \frac {y^2}{2} = \rm \frac {x^2}{2} + x + c \)
⇒ y2 = x2 + 2x + 2c
∴ y2 - x2 - 2x - c = 0
Please note: c is constant here, so 2c can be also considered as a constant.