Properties of Definite Integrals MCQ Quiz in मल्याळम - Objective Question with Answer for Properties of Definite Integrals - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 19, 2025
Latest Properties of Definite Integrals MCQ Objective Questions
Top Properties of Definite Integrals MCQ Objective Questions
Properties of Definite Integrals Question 1:
Evaluate: \(\rm \int_0^{\pi \over2} {sinx\over {(1+cos^2x)}}dx\)
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 1 Detailed Solution
Concept:
Some useful formulas are:
\(\rm {d\over {dx}}{(cosx)}=-sinx\)
\(\rm \int {1\over {(1+x^2)}}dx=tan^{-1}x+c\)
tan-11 = \(\pi \over 4\)
tan-10 = 0
\(\rm ∫_p^q f(x) dx = – ∫_q^p f(x)dx\)
Calculation:
\(\rm \int_0^{π \over2} {sinx\over {(1+cos^2x)}}dx\)
Let, cosx = z
∴ - sinx dx = dz
x | 0 | \(\pi \over2\) |
z | 1 | 0 |
Substituting the values we get,
\(\rm \int_1^{0}- {1\over {(1+z^2)}}dz\)
= \(\rm \int_0^{1}{1\over {(1+z^2)}}dz\)
= \(\rm tan^{-1}z|_0^1\)
= tan-11 - tan-10
= \(\pi \over 4\)
Properties of Definite Integrals Question 2:
The value of \(\rm \int_{-2}^{\ \ 2}(ax^5 + bx^3 + c)\ dx\) depends on the value of:
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 2 Detailed Solution
Concept:
For an odd function f(x): \(\rm \int_{-a}^{\ \ a}f(x)\ dx=0\).
Calculation:
We observe that ax5 and bx3 are odd functions of x,
∵ a(-x)5 = -ax5 and b(-x)3 = -bx3.
∴ \(\rm \int_{-2}^{\ \ 2}ax^5\ dx=0\) and \(\rm \int_{-2}^{\ \ 2}bx^3\ dx=0\).
The value of \(\rm \int_{-2}^{\ \ 2}(ax^5 + bx^3 + c)\ dx\) depends on the value of c.
In fact,
\(\rm \int_{-2}^{\ \ 2}(ax^5 + bx^3 + c)\ dx=\int_{-2}^{\ \ 2}c\ dx\).
= c [2 - (-2)]
= 4c
Additional Information
A function f(x) is:
- Even, if f(-x) = f(x). And \(\rm \int_{-a}^{\ \ a}f(x)\ dx=2\int_{0}^af(x)\ dx\).
- Odd, if f(-x) = -f(x). And \(\rm \int_{-a}^{\ \ a}f(x)\ dx=0\).
Properties of Definite Integrals Question 3:
Evaluate, \(\rm \int_{-\pi/2}^{\pi/2}\frac{1}{1+e^{\tan x}}dx\) .
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 3 Detailed Solution
Concept:
Definite Integral properties:
\(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{\;dx}}\)
Trigonometry Formula:
tan ( -x ) = - tan x
Calculation:
Let , I = \(\rm \int_{-π/2}^{π/2}\frac{1}{1+e^{\tan x}}dx\) ....(1)
Now using property, \(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{\;dx}}\)
I = \(\rm \int_{-π/2}^{π/2}\frac{1}{1+e^{\tan (-x)}}dx\)
I = \(\rm \int_{-π/2}^{π/2}\frac{1}{1+e^{-\tan x}}dx\) .... (ii)
Adding equation (i) and (ii), we get
2I = \(\rm\int_{-π/2}^{π/2}\left \{ \frac{1}{1+e^{tanx}} +\frac{1}{1+e^{-tanx}}\right \}dx\)
2I = \(\rm\int_{-π/2}^{π/2}\left \{ \frac{1}{1+e^{tanx}} +\frac{e^{tanx}}{1+e^{tanx}}\right \}dx\)
2I = \(\rm\int_{-π/2}^{π/2}\frac{1+e^{tanx}}{1+e^{tanx}}dx\)
2I = \(\rm\int_{-π/2}^{π/2}1 dx\)
2I = π
∴ I = π /2
The correct option is 3.
Properties of Definite Integrals Question 4:
If f(x) and g(x) are continuous functions satisfying f(x) = f(a – x) and g(x) + g(a – x) = 2, then what is \(\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {\rm{x}} \right){\rm{dx}}\) equal to?
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 4 Detailed Solution
Concept:
Integral Properties:
- \(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{dx}}\)
Calculation:
Given: f(x) = f(a – x) & g(x) + g(a – x) = 2
To find: \(\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {\rm{x}} \right){\rm{dx}}\)
\({\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {\rm{x}} \right){\rm{dx}}\) …. (1)
Using integral property, \(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{dx}}\)
\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{g}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{dx}}\)
Using given, f(x) = f(a – x)
\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{dx}}\) …. (2)
Adding equation (1) & (2)
\(2{\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {\rm{x}} \right){\rm{dx}} + \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{dx}}\)
\(\Rightarrow 2{\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right)\left\{ {{\rm{g}}\left( {\rm{x}} \right) + {\rm{g}}\left( {{\rm{a}} - {\rm{x}}} \right)} \right\}{\rm{dx}}\)
Using given, g(x) + g(a – x) = 2
\( \Rightarrow 2{\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right) \times 2{\rm{dx}}\)
\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}}\)
Properties of Definite Integrals Question 5:
The value of \(\rm \int_{-\pi}^{\pi} cot^{-1}x \ dx\) will be
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 5 Detailed Solution
Concept:
Some useful formulas are:
\(\rm \int_a^b f(x) dx = \int_a^b f(a + b – x) dx\)
\(\rm cot^{-1}(-x)=(π -cot^{-1}x) \ dx\)
\(\rm ∫ x^n dx = \frac {(x^{n+1})} {(n\;+\;1)} +C; \ n≠1\)
Calculation:
Let, I = \(\rm \int_{-π}^{π} cot^{-1}x \ dx\)
Since, \(\rm \int_a^b f(x) dx = \int_a^b f(a + b – x) dx\) , so
I = \(\rm \int_{-π}^{π} cot^{-1}({-π +π -x} )\ dx\)
∴ I = \(\rm \int_{-π}^{π} cot^{-1}(-x) \ dx\)
∴ I = \(\rm \int_{-π}^{π} (π -cot^{-1}x) \ dx\)
∴ I = \(\rm \int_{-π}^{π} π \ dx\) - \(\rm \int_{-π}^{π} cot^{-1}x \ dx\)
∴ I = \(\rm \int_{-π}^{π} π \ dx\) - I
∴ 2I = \(\rm π x|_{-π}^π = π[ {π - (-π)}]= 2π^2\)
∴ I = π2
Properties of Definite Integrals Question 6:
What is value of \(\rm \int_{-\pi/2}^{\pi/2} x^{5}\sin^{4}x dx\) ?
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 6 Detailed Solution
Concept:
The rules for integrating even and odd functions ,
If the function is even or odd and the interval is [-a, a], we can apply these rules:
- When f(x) is even ⇔ \(\rm\int_{-a}^{a}f(x)dx= 2 \int_{0}^{a}f(x)dx\)
- When f(x) is odd ⇔ \(\rm\int_{-a}^{a}f(x)dx= 0\)
Calculation:
Let f (x) = x5 sin4 x
f (-x) = (-x)5 sin4 (-x) = -x5 (-sin x )4 = -x5 sin4 x .
⇒ f(-x) = - f(x)
So, f(x) is an odd function .
We knoiw that, when f(x) is odd ⇔ \(\rm\int_{-a}^{a}f(x)dx= 0\)
Hence , \(\rm \int_{-\pi/2}^{\pi/2} x^{5}\sin^{4}x dx\) = 0 .
The correct option is 4 .
Properties of Definite Integrals Question 7:
If \(\rm \displaystyle\int_0^{\pi/2}\log \cos x \ dx=\dfrac{\pi}{2}\log \left(\dfrac{1}{2}\right)\) then \(\rm \displaystyle\int_0^{\pi/2}\log \sec x \ dx = \)
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 7 Detailed Solution
Calculation:
Given: \(\rm \displaystyle\int_0^{\pi/2}\log \cos x \ dx=\dfrac{\pi}{2}\log \left(\dfrac{1}{2}\right)\) .... (1)
Now,
\(\text {Let}\; \rm I = \rm \displaystyle\int_0^{\pi/2}\log \sec x \ dx \\=\rm \displaystyle\int_0^{\pi/2}\log (\frac{1}{\cos x}) \ dx\\\)
\(= \rm \displaystyle\int_0^{\pi/2}\log 1 \ dx -\rm \displaystyle\int_0^{\pi/2}\log \cos x \ dx \) (∵ log \(\rm \frac{m}{n} = \log m - \log n)\)
\(= 0-\rm \displaystyle\int_0^{\pi/2}\log \cos x \ dx \) (∵ log 1 = 0)
From equation (1), we get
\(\rm I = -\dfrac{\pi}{2}\log (\dfrac{1}{2})\\= -\dfrac{\pi}{2}[\log1 - \log 2]\)
= \(\dfrac{\pi}{2}\log 2\)
Properties of Definite Integrals Question 8:
Evaluate the integral \(\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{{\left( {3\sin {\rm{x}} + 4\cos {\rm{x}}} \right)}}{{\sin {\rm{x}} + \cos {\rm{x}}}}{\rm{dx}}\)
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 8 Detailed Solution
Concept:
Property of definite integrals:
\(\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{dx}}\)
Calculation:
I = \(\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{{\left( {3\sin {\rm{x}} + 4\cos {\rm{x}}} \right)}}{{\sin {\rm{x}} + \cos {\rm{x}}}}{\rm{dx}}\) …. (1)
Using the property of definite integrals:
\(\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{dx}}\)
I \( = \mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{{\left[ {3\sin \left( {\frac{{\rm{\pi }}}{2} - {\rm{x}}} \right) + 4\cos \left( {\frac{{\rm{\pi }}}{2} - {\rm{x}}} \right)} \right]}}{{\sin \left( {\frac{{\rm{\pi }}}{2} - {\rm{x}}} \right) + \cos \left( {\frac{{\rm{\pi }}}{2} - {\rm{x}}} \right)}}{\rm{dx}}\)
I \( = {\rm{\;}}\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{{\left( {3\cos {\rm{x}} + 4\sin {\rm{x}}} \right)}}{{\cos {\rm{x}} + \sin {\rm{x}}}}{\rm{dx}}\) .... (2)
Adding equations (1) and (2), we get
\(2{\rm{I}} = \mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{{\left( {3\sin {\rm{x}} + 4\cos {\rm{x}}} \right)}}{{\sin {\rm{x}} + \cos {\rm{x}}}}{\rm{dx}} + \mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{{\left( {3\cos {\rm{x}} + 4\sin {\rm{x}}} \right)}}{{\cos {\rm{x}} + \sin {\rm{x}}}}{\rm{dx}} \)
\(= {\rm{\;}}\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{{\left( {7\cos {\rm{x}} + 7\sin {\rm{x}}} \right)}}{{\cos {\rm{x}} + \sin {\rm{x}}}}{\rm{dx}}\)
\( = {\rm{\;}}\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{{7\left( {\cos {\rm{x}} + \sin {\rm{x}}} \right)}}{{\cos {\rm{x}} + \sin {\rm{x}}}}{\rm{dx}} \)
\(= {\rm{\;}}\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} 7{\rm{dx}} \)
\(= {\rm{\;}}\left[ {7x} \right]_0^{\frac{{\rm{\pi }}}{2}}\)
\(= 7\left( {\frac{{\rm{\pi }}}{2} - 0} \right) \)
\(= \frac{{7{\rm{\pi }}}}{2}\)
∴ I = \( \frac{{7{\rm{\pi }}}}{4}\)
Properties of Definite Integrals Question 9:
What is \(\mathop \smallint \limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} x\sin x\;dx\) equal to?
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 9 Detailed Solution
Concept:
Odd and even function:
If a function f(x) such that f(-x) = f(x) then f(x) is an even function and if f(-x) = -f(x) then f(x) is an odd function.
Integration of odd and even function:
The following two cases hold for a differentiable function f(x).
If f(x) is an even function then \( \rm \displaystyle\int_{-a}^{a}f(x)dx = 2\int_{0}^{a}f(x)dx\).
If f(x) is an odd function then \(\rm \displaystyle\int_{-a}^{a}f(x)dx = 0\).
Calculation:
Let \(\rm f(x) = x\sin x\), put -x instead of x then we get \(\rm f(-x) = (-x)\sin(-x) = x\sin x\).
Therefore, f(-x) = f(x) implies that f(x) is an even function.
Thus, the integral is given by,
\(\rm \begin{align*} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x\sin x dx &= 2\int_{0}^{\frac{\pi}{2}}x\sin x dx\\ &= 2\left[x(-\cos x) - \int(-\cos xdx)\right]_{0}^{\frac{\pi}{2}}\\ &= 2\left[-x\cos x + \sin x\right]_{0}^{\frac{\pi}{2}}\\ &= 2\left[\left(-\dfrac{\pi}{2}\cos\left(\dfrac{\pi}{2}\right) + \sin\left(\dfrac{\pi}{2}\right)\right)-\left(-0\cos 0+\sin 0\right)\right]\\ &= 2 \end{align*}\)
Hence, the value of the given integral is 2.
Properties of Definite Integrals Question 10:
Comprehension:
Direction: Based on the following information, answer the questions.
Consider the integral \({\rm{I}} = \mathop \smallint \limits_0^{\rm{\pi }} {\rm{ln\;}}(\sin {\rm{x}}){\rm{\;dx}}\)
What is \({\rm{I}} = \mathop \smallint \limits_0^{\rm{\frac{\pi}{2} }} {\rm{ln\;}}(\sin {\rm{x}}){\rm{\;dx}}\)
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 10 Detailed Solution
Concept:
\(\rm \int_{0}^{2a} f(x) d x=2\int_{0}^{a} f(2a-x) d x\)
Calculation:
\({\rm{I}} = \mathop \smallint \limits_0^{\rm{\pi }} {\rm{ln\;}}(\sin {\rm{x}}){\rm{\;dx}}\)
\(\begin{array}{l} I=2\int_{0}^{\pi/2 } \ln (\sin (\pi-x) d x \\ =2\int_{0}^{\pi/2} \ln (\sin x) d x \\ \end{array}\)
∴\( \mathop \smallint \limits_0^{\rm{\pi/2 }} {\rm{ln\;}}(\sin {\rm{x}}){\rm{\;dx}}=\rm{\frac{I}{2}} \)
Hence, option (4) is correct.