Pythagorean Identities MCQ Quiz in मल्याळम - Objective Question with Answer for Pythagorean Identities - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 18, 2025

നേടുക Pythagorean Identities ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Pythagorean Identities MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Pythagorean Identities MCQ Objective Questions

Top Pythagorean Identities MCQ Objective Questions

Pythagorean Identities Question 1:

If sec2A + tan2A = 3, then what is the value of cot A?

  1. \(\frac{1}{\sqrt{3}}\)
  2. 0
  3. 1
  4. \({\sqrt{3}}\)

Answer (Detailed Solution Below)

Option 3 : 1

Pythagorean Identities Question 1 Detailed Solution

Given:

sec2A + tan2A = 3

Concept used:

sec2 α - tan2 α = 1

Calculation:

sec2A + tan2A = 3      ....(1)

sec2A - tan2A = 1      ....(2)

Solving (1) and (2) we get,

sec2A + tan2A - sec2A + tan2A = 3 - 1 = 2

2tan2 A = 2

tan2 A = 1

So, tan A = √1 = 1

Now, cot A = 1/1 = 1

∴ The value of cot A is 1.

Pythagorean Identities Question 2:

If \(\cos ^2 θ=\frac{3}{4}\), where θ is an acute angle, then the value of sin (θ + 30°) is:

  1. 1
  2. \(\frac{1}{\sqrt{2}}\)
  3. \(\frac{1}{2}\)
  4. \(\frac{\sqrt{3}}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{\sqrt{3}}{2}\)

Pythagorean Identities Question 2 Detailed Solution

Given:

Cos2 θ = 3/4

Formula used:

Cos 30° = Sin 60° = √3/2

Calculation:

Cos2 θ = 3/4

⇒ cos θ = √(3/4) = √3/2

 cos θ  = cos 30° 

⇒ θ = 30° 

sin (θ + 30°) =  sin (30° + 30°)

⇒ sin 60° = √3/2

∴ The correct answer is √3/2.

Pythagorean Identities Question 3:

If 3 sin A + 4 cos A = 5, then the value of tan A is:

  1. \(\frac{3}{4}\)
  2. \(\frac{3}{5}\)
  3. \(\frac{5}{4}\)
  4. \(\frac{4}{5}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{3}{4}\)

Pythagorean Identities Question 3 Detailed Solution

Given:

3 sin A + 4 cos A = 5

Formula Used:

Using the identity sin2 A + cos2 A = 1

Calculation:

Let sin A = x and cos A = y

3x + 4y = 5

And,

x2 + y2 = 1

⇒ x = 3/5 and y = 4/5

tan A = sin A / cos A

⇒ tan A = (3/5) / (4/5)

⇒ tan A = 3/4

The value of tan A is 3/4.

Pythagorean Identities Question 4:

If sin θ + cos θ = \( \sqrt{3}\) cos θ, then the value of cot θ is:

  1. \(\quad \sqrt{3} - 1\)
  2. \(\quad \frac{\sqrt{3} + 1}{2}\)
  3. \(\quad \frac{\sqrt{3} - 1}{2}\)
  4. \(\quad \sqrt{3} + 1\)

Answer (Detailed Solution Below)

Option 2 : \(\quad \frac{\sqrt{3} + 1}{2}\)

Pythagorean Identities Question 4 Detailed Solution

Given:

sin θ + cos θ = √3 cos θ

We need to find the value of cot θ.

Solution:

Step 1: Rearrange the given equation:

sin θ + cos θ = √3 cos θ

Rearranging gives:

sin θ = √3 cos θ - cos θ

sin θ = cos θ (√3 - 1).

Step 2: Use the definition of cot θ:

cot θ = cos θ / sin θ.

Substitute sin θ = cos θ (√3 - 1):

cot θ = cos θ / [cos θ (√3 - 1)].

Cancel cos θ from numerator and denominator:

cot θ = 1 / (√3 - 1).

Step 3: Rationalize the denominator:

cot θ = 1 / (√3 - 1) × (√3 + 1) / (√3 + 1).

cot θ = (√3 + 1) / (3 - 1).

cot θ = (√3 + 1) / 2.

The value of cot θ is (√3 + 1) / 2.

Pythagorean Identities Question 5:

Find the value of (sin θ + cos θ)2 + (sin θ - cos θ)2.

  1. 4
  2. 0
  3. 2
  4. 1

Answer (Detailed Solution Below)

Option 3 : 2

Pythagorean Identities Question 5 Detailed Solution

Formula Used : 

Sin2θ + Cos2θ = 1

Calculation : 

⇒ (sin θ + cos θ)2 + (sin θ - cos θ)2

⇒ sin2θ + cos2θ + 2sinθcosθ + sin2θ + cos2θ - 2sinθcosθ 

⇒ 2(sin2θ + cos2θ)

⇒ 2

∴ The correct answer is 2.

Pythagorean Identities Question 6:

sinsinB=.______

  1. \(\frac{1}{2} \{ \sin(A + B) + \sin(A - B) \}\)
  2. \(\frac{1}{2} \{ \sin(A + B) - \sin(A - B)\)}
  3. \(\frac{1}{2} \{ \cos(A + B) - \cos(A - B)\)}
  4. \(\frac{1}{2} \{ \cos(A - B) - \cos(A + B)\)}

Answer (Detailed Solution Below)

Option 4 : \(\frac{1}{2} \{ \cos(A - B) - \cos(A + B)\)}

Pythagorean Identities Question 6 Detailed Solution

Given:

\sin A \sin B

Formula Used:

\(\sin A \sin B = \left[ \cos (A - B) - \cos (A + B) \right]\)

Calculation:

We know that:

\(\sin A \sin B = \left[ \cos (A - B) - \cos (A + B) \right]\)

Therefore,

sin A sin B  =\(\frac{1}{2} \{ \cos(A - B) - \cos(A + B)\) }

Thus, the correct answer is option 4.

Pythagorean Identities Question 7:

If secθ + tanθ = x, then find sinθ.

  1. \(\frac{x^2 + 1}{1 - x^2}\)
  2. \(\frac{x^2 - 1}{1 + 2x^2}\)
  3. \(\frac{x^2 - 1}{1 + x^2}\)
  4. \(\frac{1 - x^2}{1 + x^2}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{x^2 - 1}{1 + x^2}\)

Pythagorean Identities Question 7 Detailed Solution

Given: 

If sec θ + tan θ = x, find sinθ.

Formulae Used:

(secθ + tanθ) (secθ - tanθ) = 1

Solution:

sec θ + tan θ = x   ---(1)

So, sec θ - tan θ = 1/x  ---(2)

Subtracting equation (2) from equation (1):

sec θ + tan θ - (sec θ - tan θ) = x - 1/x

⇒ sec θ + tan θ - sec θ + tan θ = (x2 - 1)/x

⇒ 2 tan θ = (x2 - 1)/x

⇒ tan θ = (x2 - 1)/2x

We know that tan θ = p/b

So, p = (x2 - 1), b = 2x

h2 = p2 + b2 = (x2 - 1)2 + (2x)2

⇒ h2 = (x2)2 + 1 - 2x2 + 4x2

⇒ h2 = (x2)2 + 1 + 2x2

⇒ h2 = (x2 + 1)2

⇒ h = (x2 + 1)

So, sin θ = p/h = (x2 - 1) / (x2 + 1)

∴ The correct answer is option (3).

Pythagorean Identities Question 8:

If cos(40° + x) = sin 30°, then the value of x is:

  1. 22°
  2. 20°
  3. 19°
  4. 23°

Answer (Detailed Solution Below)

Option 2 : 20°

Pythagorean Identities Question 8 Detailed Solution

Given:

cos(40° + x) = sin 30°

Formula used:

Cos 60° = sin 30° = 1/2

Calculation:

Cos (40° + x) = sin 30°

⇒ Cos (40° + x) = 1/2

⇒ Cos (40° + x) = cos 60

⇒ (40° + x) = 60°

⇒ x = 20° 

∴ The correct answer is 20°.

Pythagorean Identities Question 9:

If \(\rm \cot A=\frac{12}{5}\), then the value of (sin A + cos A) × cosec A is _______.

  1. \(\frac{13}{5}\)
  2. \(\frac{17}{5}\)
  3. \(\frac{14}{5}\)
  4. 1

Answer (Detailed Solution Below)

Option 2 : \(\frac{17}{5}\)

Pythagorean Identities Question 9 Detailed Solution

Given:

Cot A = 12/5

Formula used:

Pythagorean theorem:

H2 = P2 + B2

Cot A = B/P ; sin A = P/H ; cos A = B/H ; cosec A = H/P

Where, H = hypotenuse ; P = perpendicular ; B = Base

Calculation:

Cot A = 12/5 = B/P

Using Pythagorean theorem:

H2 = P2 + B2

⇒ H2 = (5)2 + (12)2

⇒ H = √(25 + 144) = √169

⇒ H = 13 cm

Now,

(sin A + cos A) × cosec A

⇒ {(5/13) + (12/13)} × 13/5

⇒ (17/13) × (13/5) = 17/5

∴ The correct answer is 17/5.

Pythagorean Identities Question 10:

If sin θ - cos θ = 0, then find the value of (sinθ - cos3 θ).

  1. 0
  2. 2
  3. 1
  4. \(\frac{1}{\sqrt2}\)

Answer (Detailed Solution Below)

Option 1 : 0

Pythagorean Identities Question 10 Detailed Solution

Given :

sin θ - cos θ = 0

Calculation : 

⇒ Sinθ = Cosθ 

⇒ Cos3θ - Cos3θ 

⇒ 0

∴ The correct answer is 0.

Get Free Access Now
Hot Links: teen patti cash teen patti fun teen patti gold downloadable content lucky teen patti