भूमिती MCQ Quiz in मराठी - Objective Question with Answer for Geometry - मोफत PDF डाउनलोड करा

Last updated on Jun 5, 2025

पाईये भूमिती उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा भूमिती एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Geometry MCQ Objective Questions

भूमिती Question 1:

समीकरणे 147x - 231y = 525 आणि 77x - 49y = 203 यांच्या आलेखांचा छेदनबिंदू खालीलपैकी कोणत्या समीकरणाच्या आलेखावर आहे?

  1. 9x - 5y = 23
  2. 4x + 5y = 13
  3. 5x - 4y = 6
  4. 5x - 9y = 17

Answer (Detailed Solution Below)

Option 1 : 9x - 5y = 23

Geometry Question 1 Detailed Solution

दिलेल्याप्रमाणे:

147x - 231y = 525

77x - 49y = 203

वापरलेले सूत्र:

छेदनबिंदू शोधण्यासाठी, समीकरणांची प्रणाली सोडवा.

गणना:

दुसरे समीकरण 3 ने गुणा:

⇒ 231x - 147y = 609

आता रूपांतरित केलेल्या दुसऱ्या समीकरणापासून पहिले समीकरण वजा करा:

⇒ (231x - 147y) - (147x - 231y) = 609 - 525

⇒ 84x + 84y = 84

⇒ x + y = 1

पहिल्या समीकरणात x + y = 1 वापरून:

⇒ 147x - 231(1 - x) = 525

⇒ 147x - 231 + 231x = 525

⇒ 378x = 756

⇒ x = 2

x = 2 वापरून x + y = 1 मध्ये:

⇒ 2 + y = 1

⇒ y = -1

तर, छेदनबिंदू (2, -1) आहे.

आता तपासा की कोणते समीकरण बिंदू (2, -1) समाधान करते:

9x - 5y = 23 साठी:

⇒ 9(2) - 5(-1) = 18 + 5 = 23

∴ योग्य उत्तर पर्याय 1 आहे.

भूमिती Question 2:

10 सेमी त्रिज्येच्या वर्तुळात 16 सेमी लांबीची जीवा काढली आहे. वर्तुळाच्या केंद्रापासून त्या जीवेचे अंतर किती आहे?

  1. 8 सेमी
  2. 6 सेमी
  3. 8√10 सेमी
  4. 12 सेमी

Answer (Detailed Solution Below)

Option 2 : 6 सेमी

Geometry Question 2 Detailed Solution

दिलेल्याप्रमाणे:

जीवेची लांबी 16 सेमी आणि त्रिज्या 10 सेमी आहे.

वापरलेली संकल्पना:

वर्तुळाची त्रिज्या वर्तुळाच्या जीवेला लंबदुभाजित करते.

वापरलेला सूत्र:

काटकोन त्रिकोणात, पायथागोरस प्रमेयानुसार

(कर्ण)2 = (लंब)2 + (पाया)2 

गणना:

समजा दोन जीवा AB = 16 सेमी आहेत

वर्तुळाची त्रिज्या लंबदुभाजित होते म्हणून,

AL = BL = 16/2 = 8 सेमी

Δ AOL मध्ये, ∠ALO = 90°

⇒ (AO)2 = (OL)2 + (AL)2

⇒ 102 = (OL)2 + (8)2

⇒ (OL)2 = 100 - 64 = 36

⇒ OL = 6 सेमी

म्हणून, वर्तुळाच्या केंद्रापासून त्या जीवेचे अंतर 6 सेमी आहे.

भूमिती Question 3:

17 सेमी त्रिज्येच्या वर्तुळात, एक जीवा केंद्रापासून 15 सेमी अंतरावर आहे. तर जीवेची लांबी किती?

  1. 15 सेमी
  2. 12 सेमी
  3. 8 सेमी
  4. 16 सेमी

Answer (Detailed Solution Below)

Option 4 : 16 सेमी

Geometry Question 3 Detailed Solution

दिलेल्याप्रमाणे:

त्रिज्या (r) = 17 सेमी

केंद्रापासून जीवेचे अंतर (d) = 15 सेमी

वापरलेले सूत्र:

जीवेची लांबी = 2√(r2 - d2)

गणना:

जीवेची लांबी = 2√(172 - 152)

⇒ जीवेची लांबी = 2√(289 - 225)

⇒ जीवेची लांबी = 2√64

⇒ जीवेची लांबी = 2 × 8

⇒ जीवेची लांबी = 16 सेमी

म्हणूनच योग्य उत्तर पर्याय (4) आहे.

भूमिती Question 4:

दिलेल्या आकृतीतून X काढा. (सेमी मध्ये)

  1. 114
  2. 134
  3. 144
  4. 124

Answer (Detailed Solution Below)

Option 1 : 114

Geometry Question 4 Detailed Solution

दिलेल्याप्रमाणे:

लहान त्रिकोणाची बाजू = 126 सेमी

मोठ्या त्रिकोणाची संगत बाजू = 147 सेमी

मोठ्या त्रिकोणाची दुसरी बाजू = 133 सेमी

वापरलेले सूत्र:

समान त्रिकोणांसाठी, संबंधित बाजू प्रमाणबद्ध आहेत:

गणना:

⇒ X = 114

∴ X चे मूल्य 114 सेमी आहे.

भूमिती Question 5:

जर AB = k + 3, BC = 2k आणि AC = 5k - 5 असेल, तर 'k' च्या कोणत्या मूल्यासाठी B हे AC वर असेल?

  1. 4
  2. 8
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 1 : 4

Geometry Question 5 Detailed Solution

दिलेले आहे:

AB = k + 3

BC = 2k

AC = 5k - 5

वापरलेले सूत्र:

जेव्हा B हे AC वर असते, तेव्हा AB + BC = AC

गणना:

दिलेल्या माहितीनुसार,

⇒ AB + BC = AC

AB + BC = AC

⇒ (k + 3) + 2k = 5k - 5

⇒ 3k + 3 = 5k - 5

⇒ 8 = 2k

⇒ k = 4

∴ पर्याय 1 योग्य आहे.

Top Geometry MCQ Objective Questions

ज्याचे शिरोबिंदू निर्देशांक (1, 2), (-4, -3) आणि (4, 1) द्वारे दिले आहेत. अशा  त्रिकोणाचे क्षेत्रफळ किती?

  1. 7 चौ. एकक
  2. 20 चौ. एकक
  3. 10 चौ. एकक
  4. 14 चौ. एकक

Answer (Detailed Solution Below)

Option 3 : 10 चौ. एकक

Geometry Question 6 Detailed Solution

Download Solution PDF

वापरलेले सूत्र:

ज्याचे शिरोबिंदू (x1, y1), (x2, y2) and (x3, y3) आहेत, त्या त्रिकोणाचे क्षेत्रफळ =  ½ [x(y- y3) + x(y- y1) + x(y- y2)] 

गणना :

⇒ त्रिकोणाचे क्षेत्रफळ  = (1/2) × [1(-3 – 1) + (-4) (1 – 2) + 4{2 – (-3)}] = (1/2) × {(-4) + 4 + 20} = 20/2 = 10 चौ. एकक

चतुर्भुज PQRS च्या चारही बाजूंना वर्तुळ स्पर्श करते. जर PQ = 11 सेमी, QR = 12 सेमी आणि PS = 8 सेमी असेल तर RS ची लांबी किती आहे ?

  1. 7 सेमी
  2. 15 सेमी
  3. 9 सेमी
  4. 7.3 सेमी

Answer (Detailed Solution Below)

Option 3 : 9 सेमी

Geometry Question 7 Detailed Solution

Download Solution PDF

दिलेल्याप्रमाणे:

चतुर्भुज PQRS च्या चारही बाजूंना वर्तुळ स्पर्श करते. जर PQ = 11 सेमी, QR = 12 सेमी आणि PS = 8 सेमी

गणना:

जर वर्तुळ चतुर्भुज PQRS च्या चारही बाजूंना स्पर्श करत असेल तर,

PQ + RS = SP + RQ

तर,

⇒ 11 + RS = 8 + 12

⇒ RS = 20 - 11

⇒ RS = 9

∴ योग्य निवड पर्याय 3 आहे.

एका सुसम अष्टभुजाकृतीच्या आणि सुसम द्वादशभुजाकृतीच्या  प्रत्येक आंतरकोनाच्या मापांचे  गुणोत्तर ______आहे. 

  1. 8 : 12
  2. 9 : 10
  3. 12 : 8
  4. 4 : 5

Answer (Detailed Solution Below)

Option 2 : 9 : 10

Geometry Question 8 Detailed Solution

Download Solution PDF

संकल्पना:

अष्टभुजाकृतीला आठ बाजू असतात.

द्वादशभुजाकृतीला बारा बाजू असतात.

सूत्र:

बहुभुजाकृतीचा आंतरकोन  = {(n – 2) × 180°} /n

पडताळा:

अष्टभुजाकृतीचा आंतरकोन  = (8 – 2)/8 × 180° = 1080°/8 = 135°

द्वादशभुजाकृतीचा आंतरकोन = (12 – 2)/12 × 180° = 1800°/12 = 150°

∴ अष्टभुजाकृती : द्वादशभुजाकृती यांच्या आंतरकोनांचे गुणोत्तर = 9 : 10

वर्तुळात 75° च्या कोनात एकमेकांकडे झुकलेल्या स्पर्शिकेची जोडी काढण्यासाठी, वर्तुळाच्या त्या दोन त्रिज्यांच्या शेवटच्या बिंदूंवर स्पर्शिका काढणे आवश्यक आहे, ज्याच्या दरम्यानचा कोन आहे:

  1. 65°
  2. 75°
  3. 95°
  4. 105°

Answer (Detailed Solution Below)

Option 4 : 105°

Geometry Question 9 Detailed Solution

Download Solution PDF

संकल्पना:

त्रिज्या स्पर्शबिंदूवर स्पर्शिकेला लंब असते

चतुर्भुजाच्या सर्व कोनांची बेरीज = 360°

गणना:

PA आणि PB या बाह्य बिंदू P पासून वर्तुळाकडे काढलेल्या स्पर्शिका आहेत.

∠OAP = ∠OBP = 90°  (त्रिज्या स्पर्शबिंदूवर स्पर्शिकेला लंब असते)

आता, चतुर्भुज OAPB मध्ये,

∠APB + ∠OAP + ∠AOB + ∠OBP = 360° 

75° + 90° + ∠AOB + 90° = 360°

∠AOB = 105°

अशा प्रकारे, दोन त्रिज्या, OA आणि OB मधील कोन 105° आहे.

 

130° च्या पूरक कोनाचा कोटिकोन किती?

  1. 50° 
  2. 30° 
  3. 40° 
  4. 70° 

Answer (Detailed Solution Below)

Option 3 : 40° 

Geometry Question 10 Detailed Solution

Download Solution PDF

दिलेले:

पूरक कोनांपैकी एक 130° आहे.

वापरलेली संकल्पना:

पूरककोनासाठी: दोन कोनांची बेरीज 180° असते.

कोटिकोनासाठी: दोन कोनांची बेरीज 90° असते.

गणना:

130° चा पूरक कोन = 180° - 130° = 50°

50° चा कोटिकोन = 90° - 50° = 40°

∴ 130° च्या पूरक कोनाचा कोटिकोन 40° आहे.

ABC हा काटकोन त्रिकोण आहे. त्यात एक वर्तुळ कोरलेले आहे. काटकोन असलेल्या दोन बाजूंची लांबी ही 10 सेमी आणि 24 सेमी आहे. तर त्या वर्तुळाची त्रिज्या शोधा.

  1. 3 सेमी
  2. 5 सेमी
  3. 2 सेमी
  4. 4 सेमी

Answer (Detailed Solution Below)

Option 4 : 4 सेमी

Geometry Question 11 Detailed Solution

Download Solution PDF

दिलेली माहिती:

ABC हा काटकोन त्रिकोण आहे. त्यात एक वर्तुळ कोरलेले आहे.

काटकोन असलेल्या दोन बाजूंची लांबी 10 सेमी आणि 24 सेमी आहे

गणना :

कर्ण² = 10² + 24²    (पायथागोरस प्रमेय)

कर्ण = √676 = 26

त्रिकोणाच्या आतील वर्तुळाची त्रिज्या (वर्तुळाकार) = ( काटकोन असलेल्या बाजूंची बेरीज - कर्ण)/2

⇒ (10 + 24 - 26)/2

⇒ 8/2

⇒ 4

∴ योग्य निवड पर्याय 4 ही आहे.

समांतरभुज चौकोनामध्ये ABCD, AL आणि CM अनुक्रमे CD आणि AD ला लंब आहेत. AL = 20 सेमी, CD = 18 सेमी आणि CM = 15 सेमी. समांतरभुज चौकोनाची परिमिती किती आहे?

  1. 64 सेमी
  2. 76 सेमी
  3. 80 सेमी
  4. 84 सेमी

Answer (Detailed Solution Below)

Option 4 : 84 सेमी

Geometry Question 12 Detailed Solution

Download Solution PDF

दिलेल्याप्रमाणे:

समांतरभुज चौकोनात ABCD, AL आणि CM अनुक्रमे CD आणि AD वर लंब आहेत.

AL = 20 सेमी, CD = 18 सेमी आणि CM = 15 सेमी

वापरलेले सूत्र:

समांतरभुज चौकोनाचे क्षेत्रफळ = पाया × उंची

समांतरभुज चौकोनाची परिमिती = 2 × (समांतर बाजूंची बेरीज)

गणना:

पाया DC = AL × DC = 20 × 18 सह ABCD चे क्षेत्रफळ

⇒ 360 सेमी2

पुन्हा, पाया AD = CM × AD = 18 × AD सह ABCD चे क्षेत्रफळ

⇒ 360 सेमी2 = 15 × AD

⇒ AD = 24 सेमी

∴ AD = BC = 24 सेमी, DC = AB = 18 सेमी

ABCD ची परिमिती = 2 × (24 + 18)

⇒ 2 × 42

⇒ 84 सेमी

∴ आवश्यक परिणाम = 84 सेमी

बिंदू X वर दोन वर्तुळे एकमेकांना बाहेरून स्पर्श करतात. बिंदू P आणि बिंदू Q वरील वर्तुळांना स्पर्श करणार्या दोन्ही वर्तुळांसाठी PQ ही एक साधी सामाईक स्पर्शिका आहे. जर वर्तुळांची त्रिज्या R आणि r असेल, तर PQशोधा.

  1. 3πRr/2
  2. 4Rr
  3. 2πRr
  4. 2Rr

Answer (Detailed Solution Below)

Option 2 : 4Rr

Geometry Question 13 Detailed Solution

Download Solution PDF

 

आपल्याला माहीत आहे,

थेट सामान्य स्पर्शिकेची लांबी = √[d2 - (R - r)2]

जेथे d हे केंद्रांमधील अंतर आहे आणि R आणि r या वर्तुळांच्या त्रिज्या आहेत.

PQ = √[(R + r)2 - (R - r)2]

⇒ PQ = √[R2 + r2 + 2Rr - (R2 + r2 - 2Rr)]

⇒ PQ = √4Rr

⇒ PQ2 = 4Rr

बहुभुजाच्या आंतरकोनाच्या मापाची बेरीज 1620° आहे. बहुभुजच्या बाजूंची संख्या शोधा.

  1. 14
  2. 13
  3. 12
  4. 11

Answer (Detailed Solution Below)

Option 4 : 11

Geometry Question 14 Detailed Solution

Download Solution PDF

दिलेले आहे :

बहुभुजाच्या  आंतर्कोनाच्या मापाची बेरीज 1620° आहे.

सूत्र :

बहुभुजाच्या आंतरकोनाची  बेरीज  = (n – 2) × 180° 

जेथे n ही बाजूंची संख्या आहे.

पडताळा:

सूत्र लागू केल्यावर:

1620 = (n – 2) × 180°

⇒ (n – 2) = 9

⇒ n = 11

म्हणून, बाजूंची संख्या = 

11

दिलेल्या आकृतीमध्ये, जीवा AB आणि CD एकमेकांना L बिंदूवर छेदतात. AB ची लांबी शोधा

  1. 23.5 सेमी
  2. 21.5 सेमी
  3. 22.5 सेमी
  4. 24.5 सेमी

Answer (Detailed Solution Below)

Option 2 : 21.5 सेमी

Geometry Question 15 Detailed Solution

Download Solution PDF

दिलेले आहे:

LC = 6, CD = 11, LB = 4 आणि AB = x

वापरलेले सूत्र:

LC × LD = LB × AL

गणना:

प्रश्नानुसार

LC × LD = LB × AL 

6 × (6 + 11) = 4 × (4 + x) 

⇒ 4 + x = 51/2 

⇒ 4 + x = 25.5 

⇒ x = AB = 21.5 

∴ AB ची लांबी 21.5 सेमी आहे.

Hot Links: teen patti master real cash teen patti master king teen patti casino teen patti lotus teen patti real cash 2024