Greatest Integer Functions MCQ Quiz in मराठी - Objective Question with Answer for Greatest Integer Functions - मोफत PDF डाउनलोड करा

Last updated on Apr 4, 2025

पाईये Greatest Integer Functions उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Greatest Integer Functions एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Greatest Integer Functions MCQ Objective Questions

Top Greatest Integer Functions MCQ Objective Questions

Greatest Integer Functions Question 1:

Let \(\mathrm{x}=(8 \sqrt{3}+13)^{13} \) and \( \mathrm{y}=(7 \sqrt{2}+9)^{9} \). If [t] denotes the greatest integer ≤ t, then

  1. [x] + [y] is even
  2. [x] is odd but [y] is even
  3. [x] is even but [y] is odd
  4. [x] and [y] are both odd

Answer (Detailed Solution Below)

Option 1 : [x] + [y] is even

Greatest Integer Functions Question 1 Detailed Solution

Calculation: 

\(\mathrm{x}=(8 \sqrt{3}+13)={ }^{13} \mathrm{C}_{0} \cdot(8 \sqrt{3})^{13}+{ }^{13} \mathrm{C}_{1}(8 \sqrt{3})^{12}(13)^{1}+\ldots \)

\(\mathrm{x}^{\prime}=(8 \sqrt{3}-13)^{13}={ }^{13} \mathrm{C}_{0}(8 \sqrt{3})^{13}-{ }^{13} \mathrm{C}_{1}(8 \sqrt{3})^{12}(13)^{1}+\ldots \)

\(\mathrm{x}-\mathrm{x}^{\prime}=2\left[{ }^{13} \mathrm{C}_{1} \cdot(8 \sqrt{3})^{12}(13)^{1}+{ }^{13} \mathrm{C}_{3}(8 \sqrt{3})^{10} \cdot(13)^{3} \ldots\right]\)

∴ , x − x' is even integer, hence [x] is even

Now, \( \mathrm{y}=(7 \sqrt{2}+9)^{9}={ }^{9} \mathrm{C}_{0}(7 \sqrt{2})^{9}+\) \({ }^{9} \mathrm{C}_{1}(7 \sqrt{2})^{8}(9)^{1} +{ }^{9} \mathrm{C}_{2}(7 \sqrt{2})^{7}(9)^{2} \ldots \ldots\)

\(\mathrm{y}^{\prime}=(7 \sqrt{2}-9)^{9}={ }^{9} \mathrm{C}_{0}(7 \sqrt{2})^{9}-\) \({ }^{9} \mathrm{C}_{1}(7 \sqrt{2})^{8}(9)^{1} +{ }^{9} \mathrm{C}_{2}(7 \sqrt{2})^{7}(9)^{2} \ldots \ldots\)

\(\rm y-y^{\prime}=2\left[{ }^{9} C_{1}(7 \sqrt{2})^{8}(9)^{1}+{ }^{9} C_{3}(7 \sqrt{2})^{6}(9)^{3}+\ldots\right]\)

y − y' = Even integer, hence [y] is even

∴ [x] + [y] is even

Hence, the correct answer is Option 1. 

Greatest Integer Functions Question 2:

Let [.] denote the greatest integer function. If \(\int_{0}^{3} \left[ \frac{1}{e^{x-1}} \right] dx = \alpha - \log_e 2, \text{ then } \alpha^3 \text{ is equal to } \_\_\_\_.\)

Answer (Detailed Solution Below) 8

Greatest Integer Functions Question 2 Detailed Solution

Concept:

Greatest Integer Function and Definite Integral:

  • The greatest integer function, denoted by [x], gives the largest integer less than or equal to x.
  • To integrate a greatest integer function, divide the integral into intervals where the function is constant.
  • The function inside the integral is f(x) = [1 / ex−1] = [e1−x].
  • We need to evaluate ∫₀³ [e1−x] dx = α − logₑ2.

 

Calculation:

f(x) = [e1−x] is a decreasing function

f(0) = [e1] = [2.718] = 2

f(1−ln2) = e1−(1−ln2) = eln2 = 2

⇒ boundary point

f(x) = 2 for x ∈ [0, 1−ln2)

f(1) = [e0] = [1] = 1

f(x) = 1 for x ∈ [1−ln2, 1)

f(x) < 1 for x ≥ 1 ⇒ [f(x)] = 0

Now break the integral accordingly:

∫₀³ [e1−x] dx = ∫₀1−ln2 2 dx + ∫1−ln21 1 dx + ∫₁³ 0 dx

⇒ 2(1 − ln2) + (1 − (1 − ln2)) + 0

⇒ 2 − 2ln2 + ln2 = 2 − ln2

Given: ∫₀³ [e1−x] dx = α − ln2

Comparing both sides:

α − ln2 = 2 − ln2 ⇒ α = 2

Now, α3 = 23 = 8

∴ The value of α3 is 8.

Greatest Integer Functions Question 3:

Consider the function f(x) = [x + 1] - (sin\(\frac{\pi }{2}\)[x]) for x ϵ R. where [x] denotes the greatest integer less than or equal to x. Let l1 = limx→0-f(x) and l2 = limx→0+ f(x).It follows that

  1. \(l_1=l_2=1\)
  2. \(l_1=l_2=-1\)
  3. \(l_1=-1;l_2=1\)
  4. \(l_1=1;l_2=-1\)

Answer (Detailed Solution Below)

Option 1 : \(l_1=l_2=1\)

Greatest Integer Functions Question 3 Detailed Solution

Concept :

⇒ f(x) = [x] denotes a step function whose graph is as follows :

F1 Ravi Sharma Anil 12-06.21 D29

⇒ Thus by the graph we can depict any value, for example [2.93] = 2, [-0.5] = -1, ...

 

Calculation :

Given the function f(x) = [x + 1] - (sin\(\frac{π }{2}\)[x]).

It is given that l= limx→0-f(x).

⇒ l= limx→0-f(x) =  limx→0- {[x + 1] - (sin\(\frac{π }{2}\)[x])} = {[0-+1] - (sin\(\frac{π }{2}\)[0-])} = {[1-] - (sin\(\frac{π }{2}\)[0-])}.

⇒ l= {[1-] - (sin\(\frac{-π }{2}\))} = {0- (-1)} = 1.

It is given that l2 = limx→0+f(x).

⇒ l2 = limx→0+f(x) =  limx→0+ {[x + 1] - (sin\(\frac{π }{2}\)[x])} = {[0++1] - (sin\(\frac{π }{2}\)[0+])} = {[1+] - (sin\(\frac{π }{2}\)[0+])}.

⇒ l2 = {[1+] - (sin(0))} = {1- 0} = 1.

Thus ll2 = 1.

Mistake Points

Student often gets mistaken in two points when solving these type of problems :

  1. Observation and representation of step bracket wherever necessary.
  2. sin\(\frac{π }{2}\)(0-) = sin\(\frac{π }{2}\)(0+) = 0, but their Difference when a step function is used on them.

       ⇒ sin\(\frac{π }{2}\)[0-] = sin\(\frac{-π }{2}\) = -1 and sin\(\frac{π }{2}\)[0+] = sin0 = 0.

Greatest Integer Functions Question 4:

If f(x) = (x)[x] where [.] denotes greatest integer function and g(x) = x2 then find the value of g o f(5/2) ?

  1. 125/16
  2. 25/16
  3. 625/16
  4. None of these

Answer (Detailed Solution Below)

Option 3 : 625/16

Greatest Integer Functions Question 4 Detailed Solution

Concept:

Greatest Integer Function: (Floor function)

The function f (x) = [x] is called the greatest integer function and means greatest integer less than or equal to x i.e [x] ≤ x.

Domain of [x] is R and range is I.

If f :A → B and g : C → D. Then (fog) (x) will exist if and only if co-domain of g = domain of f i.e D = A and (gof) (x) will exist if and only if co-domain of f = domain of g i.e B = C.

Calculation:

Given: f(x) = (x)[x] where [.] denotes greatest integer function and g(x) = x2 

Here, we have to find the value of g o f(5/2) 

⇒ g o f(5/2)  = g( f(5/2))

∵ f(x) = (x)[x] where [.] denotes greatest integer function

⇒ f(5/2) = (5/2)[5/2]

As we know that [5/2] = 2

⇒ f(5/2) = (5/2)2 = 25/4

⇒ g o f(5/2)  = g(25/4)

∵ g(x) = x2 so, g(25/4) = 625/16

Hence, g o f(5/2) = 625/16

Get Free Access Now
Hot Links: teen patti master plus online teen patti teen patti star apk teen patti real cash game teen patti vungo