Numerical Differentiation and Integration MCQ Quiz in मराठी - Objective Question with Answer for Numerical Differentiation and Integration - मोफत PDF डाउनलोड करा

Last updated on Mar 25, 2025

पाईये Numerical Differentiation and Integration उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Numerical Differentiation and Integration एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Numerical Differentiation and Integration MCQ Objective Questions

Top Numerical Differentiation and Integration MCQ Objective Questions

Numerical Differentiation and Integration Question 1:

The quadrature formula 

\(\displaystyle \int_0^2\) xf(x) dx ≈ αf(0) + βf(1) + γf(2) 

is exact for all polynomials of degree ≤ 2.Then 2β - γ = _________.

Answer (Detailed Solution Below) 2

Numerical Differentiation and Integration Question 1 Detailed Solution

First Let f(x)  = 1 

\(\displaystyle \int_0^2\) xf(x) dx ≈ αf(0) + βf(1) + γf(2) becomes 

{x2/2} from 0 to 2 = α + β + γ 

α + β + γ  = 2 --- (1)

Let f(x) = x 

{x3/3} from 0 to 2 = α. 0 + β.1 + γ.2

 β + 2γ  = 8/3 ----(2)

Let f(x) = x2

{x4/4} from 0 to 2 = α. 0 + β.1 + γ.4

 β+ 4γ = 4 ----(3)

By Solving 2nd and 3rd 

We, get β = 4/3 and γ = 2/3 

So, The Value of 2β - γ = 2(4/3) - (2/3) = 2\

Hence, The Correct Answer is 2.

Numerical Differentiation and Integration Question 2:

If the polynomial

p(x) = α + β(x + 2) + γ(x + 2)(x + 1) + δ(x + 2)(x + 1)x

interpolates the data

x

-2

-1

0

1

2

f(x)

2

-1

8

5

-34


then α + β + γ + δ = __________.

Answer (Detailed Solution Below) 1

Numerical Differentiation and Integration Question 2 Detailed Solution

Explanation:

Using Forward divide difference

x f(x) 1st F.D. 2nd F.D. 3rd F.D. 4th F.D
-2 2 -3      
-1 -1 9 6    
0 8 -3 -6 -4 0
1 5 -39 -18 -4  
2 -34        
 

Then general Expression is 

P(x) = f(x0) + (x - x0) f[x0, x1] + (x - x0)(x - x1) f[x0, x1, x2] + (x - x0)(x - x1) (x - x2f[x0, x1, x2, x3] + (x - x0)(x - x1) (x - x2)(x - x3) f[x0, x1, x2, x3, x4]

⇒ P(x) = 2 + (x - (-2)) (-3) + (x -(-2))(x - (-1)) 6 + (x -(-2))(x -(-1)) (x - 0) (-4) + 0 

⇒ P(x) = 2 +  -3(x + 2) + 6(x + 2)(x + 1) + -4(x + 2)(x + 1)x

Compare with given expression we will get the values of 

P(x) = α + β(x + 2) + γ(x + 2)(x + 1) + δ(x + 2)(x + 1)x 

we get

α = 2, β = -3 γ = 6 δ = -4 

Hence α + β + γ + δ = 2 - 3 + 6 - 4 = 1

Hence, The Correct Answer is 1.

Get Free Access Now
Hot Links: teen patti download teen patti classic teen patti club