Solving Homogeneous Differential Equation MCQ Quiz in தமிழ் - Objective Question with Answer for Solving Homogeneous Differential Equation - இலவச PDF ஐப் பதிவிறக்கவும்
Last updated on Mar 21, 2025
Latest Solving Homogeneous Differential Equation MCQ Objective Questions
Top Solving Homogeneous Differential Equation MCQ Objective Questions
Solving Homogeneous Differential Equation Question 1:
Let f(x) = \(\left.\sqrt{\lim _{x \rightarrow x}\left\{\left.\frac{2 r^2\left[(f(r))^2-f(x) f(r)\right]}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}} \right\rvert\,\right.}\right\}\) be differentiable in (-∞, 0) ∪ (0, ∞) and f(1) = 1. Then the value of ea, such that f(a) = 0, is equal to _____.
Answer (Detailed Solution Below) 2
Solving Homogeneous Differential Equation Question 1 Detailed Solution
Calculation
Given
f(1) = 1, f(a) = 0
f(x) = \(\left.\sqrt{\lim _{x \rightarrow x}\left\{\left.\frac{2 r^2\left[(f(r))^2-f(x) f(r)\right]}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}} \right\rvert\,\right.}\right\}\)
⇒ \(f^2(x)=\operatorname{Lim}_{r \rightarrow x}\left(\frac{2 r^2\left(f^2(r)-f(x) f(r)\right)}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}}\right)\)
⇒ \(\operatorname{Lim}_{r \rightarrow x}\left(\frac{2 r^2 f(r)}{r+x} \frac{(f(r)-f(x))}{r-x}-r^3 e^{\frac{f(r)}{r}}\right)\)
⇒ \(f^2(x)=\frac{2 x^2 f(x)}{2 x} f^{\prime}(x)-x^3 e^{\frac{f(x)}{x}}\)
⇒ \(y^2=x y \frac{d y}{d x}-x^3 e^{\frac{y}{x}}\)
⇒ \(\frac{y}{x}=\frac{d y}{d x}-\frac{x^2}{y} e^{\frac{y}{x}}\)
Put \(y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}\)
⇒ \(v=v+x \frac{d v}{d x}-\frac{x}{v} e^v\)
⇒ \(\frac{d v}{d x}=\frac{e^v}{v} \Rightarrow e^{-v} v d v=d x\)
Integrating both side
⇒ ev (x + c) + 1 + v = 0
For f(1) = 1 ⇒ c = \(-1-\frac{2}{e} \)
⇒ \(e^v\left(-1-\frac{2}{e}+x\right)+1+v=0 \)
⇒ \(e^{\frac{y}{x}}\left(-1-\frac{2}{e}+x\right)+1+\frac{y}{x}=0 \)
For \( x=a, y=0 \Rightarrow a=\frac{2}{e} \)
⇒ ae = 2
Solving Homogeneous Differential Equation Question 2:
If the solution curve, of the differential equation \( \frac{d y}{d x}=\frac{x+y-2}{x-y}\) passing through the point (2, 1) is \( \tan ^{-1}\left(\frac{y-1}{x-1}\right)-\frac{1}{β} \log _e\left(α+\left(\frac{y-1}{x-1}\right)^2\right)=\log _e|x-1| \) , then 5β + α is equal to
Answer (Detailed Solution Below) 11
Solving Homogeneous Differential Equation Question 2 Detailed Solution
Calculation
Given
\(\frac{d y}{d x}=\frac{x+y-2}{x-y}\)
Let x = X + h, y = Y + k
⇒ \(\frac{d Y}{d X}=\frac{X+Y}{X-Y}\)
\(\left.\begin{array}{l} \mathrm{h}+\mathrm{k}-2=0 \\ \mathrm{~h}-\mathrm{k}=0 \end{array}\right\} \mathrm{h}=\mathrm{k}=1\)
Let Y = vX
⇒ \(v+\frac{d v}{d X}=\frac{1+v}{1-v} \Rightarrow X-\frac{d v}{d X}=\frac{1+v^2}{1-v}\)
⇒ \(\frac{1-v}{1+v^2} d v=\frac{d X}{X}\)
⇒ \(\tan ^{-1} v-\frac{1}{2} \ln \left(1+v^2\right)=\ln |X|+C\)
⇒ \(\tan ^{-1}\left(\frac{y-1}{x-1}\right)-\frac{1}{2} \ln \left(1+\left(\frac{y-1}{x-1}\right)^2\right)=\ln |x-1| +C\)
As curve is passing through (2, 1) ⇒ C = 0
⇒ \(\tan ^{-1}\left(\frac{y-1}{x-1}\right)-\frac{1}{2} \ln \left(1+\left(\frac{y-1}{x-1}\right)^2\right)=\ln |x-1|\)
∴ α = 1 and β = 2
⇒ 5β + α = 11
Solving Homogeneous Differential Equation Question 3:
The solution curve of the differential equation \(\rm y\frac{dx}{dy}=x(\log_e x-\log_e y+1), x >0, y>0\) passing through the point (e, 1) is
Answer (Detailed Solution Below)
Solving Homogeneous Differential Equation Question 3 Detailed Solution
Calculation
Given
\(\rm y\frac{dx}{dy}=x(\log_e x-\log_e y+1)\)
⇒ \(\rm \frac{dx}{dy}=\frac{x}{y}(\log_e \frac{x}{y}+1)\)
Put \(\frac{x}{y}=v\)
⇒ \(\rm v+y \frac{dv}{dy}=v(\log_e v+1)\)
⇒ \(y \frac{dv}{dy}=v\log_e v\)
⇒ \(\frac{1}{v\log_e v}dv=\frac{dy}{y}\)
⇒ \(\int\frac{dv}{vlog_ev}=\int\frac{dy}{y}\)
⇒ \(log_e|log_ev|=log_e(y) +log_ec\)
⇒ cy = \(|log_e\frac{x}{y}|\)
Put x = e , y = 1 ⇒ c = 1
Solving Homogeneous Differential Equation Question 4:
The Sol. of the differential equation xy2dy - (x3 + y3)dx = 0 is
Answer (Detailed Solution Below)
Solving Homogeneous Differential Equation Question 4 Detailed Solution
Given, xy2dy - (x3 + y3)dx = 0
⇒ xy2dy = (x3 + y3)dx
⇒ \({ dy \over dx } = {x^3 + y^3 \over xy^2}\)
⇒ \({ dy \over dx } = ({x\over y})^2 +{ y \over x}\)
Put y = vx → \({dy \over dx } = v + x {dv \over dx}\)
⇒ \(v + x {dv \over dx} = {1 \over v^2} + v \)
Solving Homogeneous Differential Equation Question 5:
The solution of the differential equation x dy - y dx = \(\sqrt{(x^2+y^2)}dx\) is
Answer (Detailed Solution Below)
Solving Homogeneous Differential Equation Question 5 Detailed Solution
Given, x dy - y dx = \(\sqrt{(x^2+y^2)}dx\)
⇒ x dy = y dx + \(\sqrt{(x^2+y^2)}dx\)
⇒ \(\frac{dy}{dx}=\frac{y + \sqrt{(x^2+y^2)}}{x}\)
⇒ \(\frac{dy}{dx}= { y \over x}+{ \sqrt{1+({y \over x})^2}}\)
Put y = vx → \({dy \over dx } = v + x {dv \over dx}\)
⇒ \(v + x {dv \over dx} = v + \sqrt { 1+ v^2}\)
⇒ \(x {dv \over dx} = \sqrt { 1+ v^2}\)
⇒ \( {dv \over\sqrt{ 1+ v^2}} ={dx \over x}\)
Integrating both sides,
⇒ \(\int {dv \over\sqrt{ 1+ v^2}} =\int{dx \over x}\)d
⇒ \(\log ({v+ \sqrt{ 1+ v^2} }) =\log x + \log c\)
⇒ \( {{y \over x}+ \sqrt{ 1+({y \over x})^2} } =cx\)
⇒ \(y + \sqrt{ x ^2 + y^2} =cx^2\)
∴ The correct answer is option (2).
Solving Homogeneous Differential Equation Question 6:
The Sol. of the differential equation xy2dy - (x3 + y3)dx = 0 is
Answer (Detailed Solution Below)
Solving Homogeneous Differential Equation Question 6 Detailed Solution
Given, xy2dy - (x3 + y3)dx = 0
⇒ xy2dy = (x3 + y3)dx
⇒ \({ dy \over dx } = {x^3 + y^3 \over xy^2}\)
⇒ \({ dy \over dx } = ({x\over y})^2 +{ y \over x}\)
Put y = vx → \({dy \over dx } = v + x {dv \over dx}\)
⇒ \(v + x {dv \over dx} = {1 \over v^2} + v \)
Solving Homogeneous Differential Equation Question 7:
The general solution of the differential equation \(x \frac{d y}{d x}=y+x \tan \left(\frac{y}{x}\right)\) is
Answer (Detailed Solution Below)
Solving Homogeneous Differential Equation Question 7 Detailed Solution
Calculation
Given equation: \(x\frac{dy}{dx} = y + x \tan(\frac{y}{x})\)
Divide by x: \(\frac{dy}{dx} = \frac{y}{x} + \tan(\frac{y}{x})\)
Let y = vx, then \(\frac{dy}{dx} = v + x\frac{dv}{dx}\)
Substitute in the equation:
\(v + x\frac{dv}{dx} = v + \tan(v)\)
⇒ \(x\frac{dv}{dx} = \tan(v)\)
⇒ \(\frac{dv}{\tan(v)} = \frac{dx}{x}\)
⇒ \(\cot(v) dv = \frac{dx}{x}\)
Integrate both sides:
\(\int \cot(v) dv = \int \frac{dx}{x}\)
⇒ \(\ln|\sin(v)| = \ln|x| + \ln|C|\)
⇒ \(\ln|\sin(v)| = \ln|Cx|\)
Remove the logarithms:
⇒ \(\sin(v) = Cx\)
Substitute v = y/x:
⇒ \(\sin(\frac{y}{x}) = Cx\)
∴ The general solution is \(\sin(\frac{y}{x}) = Cx\).
Hence option 2 is correct
Solving Homogeneous Differential Equation Question 8:
The general solution of the differential equation \(\rm x\cos \frac{y}{x}\left( {y\,dx + x\,dy} \right) = y\sin \frac{y}{x}\left( {x\,dy - y\,dx} \right) \) is
Answer (Detailed Solution Below)
Solving Homogeneous Differential Equation Question 8 Detailed Solution
Concept:
If \(\rm\frac{dy}{dx}=f(x,y)\) is a homogeneous differential equation, put y = vx,
Then substitute \(\rm\frac{dy}{dx}=v + x\frac{dv}{dx}\).
Calculation:
Given \(\rm x\cos \frac{y}{x}\left( {y\,dx + x\,dy} \right) = y\sin \frac{y}{x}\left( {x\,dy - y\,dx} \right) \)
⇒ \(\rm xy\cos \frac{y}{x}dx+x^2\cos \frac{y}{x}dy = xy\sin \frac{y}{x}dy-y^2\sin \frac{y}{x}dx\)
⇒ (xy cos\(\rm\frac{y}{x}\) + y2 sin \(\rm\frac{y}{x}\))dx = (xy sin\(\rm\frac{y}{x}\) - x2 cos \(\rm\frac{y}{x}\))dy
⇒ \(\rm\frac{dy}{dx}=\frac{xy\cos\frac{y}{x}+y^2\sin\frac{y}{x}}{xy\sin\frac{y}{x}-x^2\cos\frac{y}{x}}\)
Dividing the numerator and denominator of R.H.S by x2.
⇒ \(\rm\frac{dy}{dx}=\frac{\frac{y}{x}\cos\frac{y}{x}+\frac{y^2}{x^2}\sin\frac{y}{x}}{\frac{y}{x}\sin\frac{y}{x}-\cos\frac{y}{x}}\)
Put y = vx
⇒ \(\rm\frac{dy}{dx}=v+x\frac{dv}{dx}\)
∴ Rewriting the equation, we get:
v + x\(\rm\frac{dv}{dx}\) = \(\rm\frac{v\cos v + v^2\sin v}{v\sin v-\cos v}\)
⇒ x\(\rm\frac{dv}{dx}\) = \(\rm\frac{2v\cos v }{v\sin v-\cos v}\)
⇒ \(\rm\frac{v\sin v-\cos v}{v\cos v}dv=2\frac{dx}{x}\)
Integrating both sides, we get:
⇒ \(\rm\int\frac{v\sin v-\cos v}{v\cos v}dv=2\int\frac{dx}{x}\)
⇒ \(\rm\int(\tan v-\frac{1}{v})dv=2\int\frac{dx}{x}\)
⇒ log |sec v| - log |v| = 2 log |x| + log k.
⇒ log \(\rm\left|\frac{\sec \frac{y}{x}}{\frac{y}{x}}\right|\) = log |x2| + log k.
⇒ log \(\rm\left|\frac{\sec \frac{y}{x}}{\frac{y}{x}}\right|\) - log |x2| = log k.
⇒ log \(\rm\left|\frac{\sec \frac{y}{x}}{\frac{y}{x}\times x^2}\right|\) = log k.
⇒ log \(\rm\left|\frac{\sec \frac{y}{x}}{yx}\right|\) = log k
⇒ \(\rm\frac{\sec \frac{y}{x}}{yx}=k\)
⇒ sec \(\rm\frac{y}{x}\) = kxy
⇒ \(\rm\cos \left( {\frac{y}{x}} \right) = \frac{C}{{xy}} \)
Solving Homogeneous Differential Equation Question 9:
The solution of \(\rm x^2{ dy\over dx}= x^2+xy+y^2\) will be
Answer (Detailed Solution Below)
Solving Homogeneous Differential Equation Question 9 Detailed Solution
Concept:
Some useful formulas are:
\(\rm \int{ dx\over x}=logx+c\)
\(\rm \int{ dx \over {a^2+x^2}}={1\over a}tan^{-1}x+c\)
Calculation:
\(\rm x^2{ dy\over dx}= x^2+xy+y^2\)
⇒\(\rm { dy\over dx}= 1+{y\over x}+({y\over x})^2\)
Substituting y = vx and \(\rm {{dy}\over {dx}} = v+x {{dv}\over{dx}} \)
⇒ \(\rm v+x{ dv\over dx}= 1+v+v^2\)
⇒ \(\rm x{ dv\over dx}= 1+v^2\)
Integrating both sides we get,
\(\rm \int{ dx\over x}=\int{ dv \over {1+v^2}}\)
⇒ \(\rm logx= tan^{-1}v+c\), c = constant of integration
Putting the value of v we get,
∴ \(\rm \log x= tan^{-1}{y\over x}+c\)
Solving Homogeneous Differential Equation Question 10:
The general solution of differential equation \( \cfrac { dx }{ dy } =\cos { \left( x+y \right) } \) is
Answer (Detailed Solution Below)
Solving Homogeneous Differential Equation Question 10 Detailed Solution
Calculation
\( \cfrac { dx }{ dy } =\cos { \left( x+y \right) } \)
Let \( x+y=v \implies \dfrac{dx}{dy}+1=\dfrac{dv}{dy} \)
⇒ \( \dfrac{dv}{dy}=1+\cos{v}=2\cos^2{\dfrac{v}{2}} \)
\(\Rightarrow \dfrac{dv}{\cos^2{\dfrac{v}{2}}}=2dy \)
⇒ \( \sec^2{\dfrac{v}{2}}dv=2dy \)
Integrating both sides:-
⇒ \( 2\tan{\dfrac{v}{2}}=2y+k \)
⇒ \( \tan{\left(\dfrac{x+y}{2}\right)}=y+c \)
Hence, option 1 is correct