Evaluation of Determinants MCQ Quiz in తెలుగు - Objective Question with Answer for Evaluation of Determinants - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on May 20, 2025

పొందండి Evaluation of Determinants సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Evaluation of Determinants MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Evaluation of Determinants MCQ Objective Questions

Evaluation of Determinants Question 1:

A అనే 3 వ తరగతి మాత్రికానిర్ధారకం K అయితే, మాత్రికలు (AAT) మరియు (A - AT) ల యొక్క నిర్ధారకాల మొత్తం

  1. 2K
  2. 0
  3. K2
  4. K

Answer (Detailed Solution Below)

Option 3 : K2

Evaluation of Determinants Question 1 Detailed Solution

Evaluation of Determinants Question 2:

α, β, γ లు \(\left|\begin{array}{ccc} 1-x & -2 & 1 \\ -2 & 4-x & -2 \\ 1 & -2 & 1-x \end{array}\right|=0\) యొక్క మూలాలు అయితే αβ + βγ + γα =

  1. 6
  2. 8
  3. 0
  4. -4

Answer (Detailed Solution Below)

Option 3 : 0

Evaluation of Determinants Question 2 Detailed Solution

Evaluation of Determinants Question 3:

α, β, γ లు \(\left|\begin{array}{lll} x & 2 & 2 \\ 2 & x & 2 \\ 2 & 2 & x \end{array}\right|=0\) సమీకరణం యొక్క మూలాలు మరియు min(α, β, γ) = α అయితే, 2α + 3β + 4γ =

  1. 6
  2. 8
  3. -6
  4. -8

Answer (Detailed Solution Below)

Option 1 : 6

Evaluation of Determinants Question 3 Detailed Solution

Evaluation of Determinants Question 4:

\(\left|\begin{array}{ccc} \cos (A+B) & -\sin (A+B) & \cos (2 B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B \end{array}\right|\) = 0 అయితే, B విలువ

  1. nπ, n ∈ ℤ
  2. \((2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}\)
  3. \((2 n+1) \frac{\pi}{4}, n \in \mathbb{Z}\)
  4. \(2 \mathrm{n} \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}\)

Answer (Detailed Solution Below)

Option 2 : \((2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}\)

Evaluation of Determinants Question 4 Detailed Solution

సమాధానం : 2

పరిష్కారం :

\(\left|\begin{array}{ccc} \cos (A+B) & -\sin (A+B) & \cos (2 B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B \end{array}\right|=0\)

cos(A + B) [(cos A cos B - sin A sin B)] + sin(A + B) [sin A cos B + sin B cos A] + cos 2B [sin2 A + cos2 A] = 0

cos(A + B) cos(A + B)

+sin(A + B) sin(A + B) + cos 2 B = 0

cos2 (A + B) + sin2 (A + B) + cos 2 B = 0

1 + cos 2 B = 0

2 cos2 B -1 = 0

2 cos2 B = 1

cos2B = 1/2

cos B = 0

\(B=(2 n+1) \frac{\pi}{2} \text { for }(n \in Z)\)

Evaluation of Determinants Question 5:

\(\left| {\begin{array}{*{20}{c}} {\cos 2 {\rm{x}}}\\ {{{\sin }^2}{\rm{x}}}\\ {\cos 2{\rm{x}}} \end{array}\begin{array}{*{20}{c}} {{{\sin }^2}x}\\ {\cos 2x}\\ {{{\cos }^2}x} \end{array}\begin{array}{*{20}{c}} {\cos 2x}\\ {{{\cos }^2}x}\\ {\cos 2x} \end{array}} \right|\) అనే నిర్థారకాన్ని cos x యొక్క ఘాతకములో విస్తరించినపుడు వచ్చే స్థిర పదము

  1. 1
  2. -1
  3. 0
  4. 2

Answer (Detailed Solution Below)

Option 1 : 1

Evaluation of Determinants Question 5 Detailed Solution

Top Evaluation of Determinants MCQ Objective Questions

Evaluation of Determinants Question 6:

\(\left|\begin{array}{ccc} \cos (A+B) & -\sin (A+B) & \cos (2 B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B \end{array}\right|\) = 0 అయితే, B విలువ

  1. nπ, n ∈ ℤ
  2. \((2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}\)
  3. \((2 n+1) \frac{\pi}{4}, n \in \mathbb{Z}\)
  4. \(2 \mathrm{n} \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}\)

Answer (Detailed Solution Below)

Option 2 : \((2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}\)

Evaluation of Determinants Question 6 Detailed Solution

సమాధానం : 2

పరిష్కారం :

\(\left|\begin{array}{ccc} \cos (A+B) & -\sin (A+B) & \cos (2 B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B \end{array}\right|=0\)

cos(A + B) [(cos A cos B - sin A sin B)] + sin(A + B) [sin A cos B + sin B cos A] + cos 2B [sin2 A + cos2 A] = 0

cos(A + B) cos(A + B)

+sin(A + B) sin(A + B) + cos 2 B = 0

cos2 (A + B) + sin2 (A + B) + cos 2 B = 0

1 + cos 2 B = 0

2 cos2 B -1 = 0

2 cos2 B = 1

cos2B = 1/2

cos B = 0

\(B=(2 n+1) \frac{\pi}{2} \text { for }(n \in Z)\)

Evaluation of Determinants Question 7:

\(\left| {\begin{array}{*{20}{c}} x\\ 0\\ 0\\ 2 \end{array}\begin{array}{*{20}{c}} 0\\ 0\\ x\\ 0 \end{array}\begin{array}{*{20}{c}} 0\\ 0\\ 0\\ {x - 1} \end{array}\begin{array}{*{20}{c}} 0\\ 1\\ 0\\ 2 \end{array}} \right| - \left| {\begin{array}{*{20}{c}} 0\\ 0\\ 2 \end{array}\begin{array}{*{20}{c}} x\\ 0\\ 2 \end{array}\begin{array}{*{20}{c}} 0\\ {x - 1}\\ 0 \end{array}} \right|\) = 0 

పై సమీకరణానికి మూలాల మొత్తము

  1. 2
  2. 3
  3. 1
  4. 5

Answer (Detailed Solution Below)

Option 2 : 3

Evaluation of Determinants Question 7 Detailed Solution

Evaluation of Determinants Question 8:

A అనే 3 వ తరగతి మాత్రికానిర్ధారకం K అయితే, మాత్రికలు (AAT) మరియు (A - AT) ల యొక్క నిర్ధారకాల మొత్తం

  1. 2K
  2. 0
  3. K2
  4. K

Answer (Detailed Solution Below)

Option 3 : K2

Evaluation of Determinants Question 8 Detailed Solution

Evaluation of Determinants Question 9:

α, β, γ లు \(\left|\begin{array}{ccc} 1-x & -2 & 1 \\ -2 & 4-x & -2 \\ 1 & -2 & 1-x \end{array}\right|=0\) యొక్క మూలాలు అయితే αβ + βγ + γα =

  1. 6
  2. 8
  3. 0
  4. -4

Answer (Detailed Solution Below)

Option 3 : 0

Evaluation of Determinants Question 9 Detailed Solution

Evaluation of Determinants Question 10:

\(\left| {\begin{array}{*{20}{c}} {\cos 2 {\rm{x}}}\\ {{{\sin }^2}{\rm{x}}}\\ {\cos 2{\rm{x}}} \end{array}\begin{array}{*{20}{c}} {{{\sin }^2}x}\\ {\cos 2x}\\ {{{\cos }^2}x} \end{array}\begin{array}{*{20}{c}} {\cos 2x}\\ {{{\cos }^2}x}\\ {\cos 2x} \end{array}} \right|\) అనే నిర్థారకాన్ని cos x యొక్క ఘాతకములో విస్తరించినపుడు వచ్చే స్థిర పదము

  1. 1
  2. -1
  3. 0
  4. 2

Answer (Detailed Solution Below)

Option 1 : 1

Evaluation of Determinants Question 10 Detailed Solution

Evaluation of Determinants Question 11:

α, β, γ లు \(\left|\begin{array}{lll} x & 2 & 2 \\ 2 & x & 2 \\ 2 & 2 & x \end{array}\right|=0\) సమీకరణం యొక్క మూలాలు మరియు min(α, β, γ) = α అయితే, 2α + 3β + 4γ =

  1. 6
  2. 8
  3. -6
  4. -8

Answer (Detailed Solution Below)

Option 1 : 6

Evaluation of Determinants Question 11 Detailed Solution

Get Free Access Now
Hot Links: teen patti circle teen patti master purana teen patti rummy online teen patti teen patti yes