Odd and even function MCQ Quiz in తెలుగు - Objective Question with Answer for Odd and even function - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 30, 2025

పొందండి Odd and even function సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Odd and even function MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Odd and even function MCQ Objective Questions

Top Odd and even function MCQ Objective Questions

Odd and even function Question 1:

\( \mathop \smallint \nolimits_{ - 2}^2 \left( {sinx + cosx} \right)dx\)

  1. 2sin2
  2. 2cos2
  3. 2
  4. 1
  5. 0

Answer (Detailed Solution Below)

Option 1 : 2sin2

Odd and even function Question 1 Detailed Solution

Concept used:

Integral property

\(\mathop \smallint \limits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \left\{ {\begin{array}{*{20}{c}} {2\mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},If\;f\left( { - {\rm{x}}} \right) = f\left( x \right)}\\ {0,\;If\;f\left( { - {\rm{x}}} \right) = - f\left( x \right)} \end{array}} \right.\)

Calculation:

\( \mathop \smallint \nolimits_{ - 2}^2 \left( {sinx + cosx} \right)dx\)

Let f1(x) = sinx and f2(x) = cosx

f1(x) = sinx

f1(-x) = sin(-x) = -sinx = -f1(x)

f2(x) = cosx

f2(-x) = cox(-x) = cosx = f2(x)

By integration property f1(x) = 0

⇒ \(2\mathop \smallint \nolimits_0^2 cosx\;dx\)

⇒ 2 \(\rm[sinx]^2_0\)

⇒ 2[sin2 - sin0]

⇒ 2sin2

Odd and even function Question 2:

\(\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^{13}+\underline{x} \cos x+\tan ^{15} x+1\right)\)dx = ________.

  1. 1
  2. 2
  3. π
  4. 0

Answer (Detailed Solution Below)

Option 3 : π

Odd and even function Question 2 Detailed Solution

Concept Used:

If f(x) is an odd function, then \(\int_{-a}^{a} f(x) dx = 0\).
If f(x) is an even function, then \(\int_{-a}^{a} f(x) dx = 2\int_{0}^{a} f(x) dx\).

Calculation:

Given:

\(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^{13} + x \cos x + \tan^{15} x + 1) dx\)

\(x^{13}\) is an odd function.

\(x \cos x\) is an odd function (since x is odd and cos x is even).

\(\tan^{15} x\) is an odd function.

1 is an even function.

\(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^{13} + x \cos x + \tan^{15} x + 1) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{13} dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan^{15} x dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 dx\)

\(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 dx = 2 \int_{0}^{\frac{\pi}{2}} 1 dx = 2[x]_0^{\frac{\pi}{2}} = 2(\frac{\pi}{2} - 0) = \pi\)

Hence option 3 is correct

Odd and even function Question 3:

Let \( f(x)=\int_0^x g(t) \log _e\left(\frac{1-t}{1+t}\right) d t\), where g is a continuous odd function.  

If \( \int_{-\pi / 2}^{\pi / 2}\left(f(x)+\frac{x^2 \cos x}{1+e^x}\right) d x=\left(\frac{\pi}{α}\right)^2-α \), then α is equal to ____

Answer (Detailed Solution Below) 2

Odd and even function Question 3 Detailed Solution

Calculation

\(f(x)=\int_0^x g(t) \ln \left(\frac{1-t}{1+t}\right) d t\)

⇒ \(\mathrm{f}(-\mathrm{x})=\int_0^{-\mathrm{x}} \mathrm{g}(\mathrm{t}) \ln \left(\frac{1-\mathrm{t}}{1+\mathrm{t}}\right) \mathrm{dt}\)

 \(f(-x)=-\int_0^x g(-y) \ln \left(\frac{1+y}{1-y}\right) d y\)

 \(-\int_0^x g(y) \ln \left(\frac{1-y}{1+y}\right) d y \text { (g is odd) }\)

⇒ f(-x) = - f(x) ⇒ f is also odd

Now, 

\(\rm I=\int_{-\pi / 2}^{\pi / 2}\left(f(x)+\frac{x^2 \cos x}{1+e^x}\right) d x \quad...(1)\)

⇒ \(\rm I=\int_{-\pi / 2}^{\pi / 2}\left(f(-x)+\frac{x^2 e^x \cos x}{1+e^x}\right) d x\quad...(2)\)

Adding (1) and (2)

⇒ \(\rm 2 I=\int_{-\pi / 2}^{\pi / 2} x^2 \cos x d x=2 \int_0^{\pi / 2} x^2 \cos x d x\)

⇒ \(\rm I=\left(x^2 \sin x\right)_0^{\pi / 2}-\int_0^{\pi / 2} 2 x \sin x d x\)

 \(\frac{\pi^2}{4}-2\left(-x \cos x+\int \cos x d x\right)_0^{\pi / 2}\)

 \(\frac{\pi^2}{4}-2(0+1)=\frac{\pi^2}{4}-2 \Rightarrow\left(\frac{\pi}{2}\right)^2-2\)

∴ α = 2

Odd and even function Question 4:

Let f(x) and ϕ(x) be two continuous functions on R satisfying \(ϕ (x)=\displaystyle \int_a^x f(t)\:dt, a \ne 0\) and another continuous function g(x) satisfying g(x + α) + g(x) = 0, ∀ x ∈ R, α > 0 and \(\displaystyle \int_b^{2k} g(t)\:dt\) is independent of b, then

I. If f(x) is an even function, then ϕ(x) is also even.

II. If f(x) is an even function, then ϕ(x) is an odd function.

III. f(x) and ϕ(x) are independent.

Which of the above statement(s) is/are correct?

  1. Only I
  2. Only II
  3. Only III
  4. None of these

Answer (Detailed Solution Below)

Option 3 : Only III

Odd and even function Question 4 Detailed Solution

Concept:

The indefinite integral of an even function is an odd function plus constant.

That is , If f(x) is an even function, and f(x) dx = F(x) + C 

Then F(x) is an odd function.

Calculation:

Given, f(x) and ϕ(x) be two continuous functions on R satisfying 

\(ϕ (x)=\displaystyle ∫_a^x f(t)\:dt, a \ne 0\)

Let ∫ f(x) dx = F(x)

⇒ \(ϕ (x)=\displaystyle F(t) |_{a}^{x}\)

⇒ \(ϕ (x) = F(x) - F(a)\)             ____(i)

If f(x) is an even function 

⇒ f(-x) = f(x)

⇒ F(x) is an odd function

⇒ F(-x) = - F(x)

Now, \(ϕ (-x)=\displaystyle ∫_a^{-x} f(t)\:dt\)

⇒ \(ϕ (-x)=\displaystyle F(t) |_{a}^{-x}\)

⇒ \(ϕ (-x) = F(-x) - F(a)\)

⇒ \(ϕ (-x) = -F(x) - F(a)\)

⇒ \(ϕ (-x) = -[F(x) + F(a)]\)     ___(ii)

Comparing (i) and (ii), we get

ϕ(x) is neither odd nor even function when f(x) is even.

So, ϕ(x) and f(x) are independent function.

∴ The correct answer is option (3).

Odd and even function Question 5:

\(\rm \int_{-\pi /2}^{\ \ \pi /2}e^{\sin^{-2} x}.\sin^{2n+1}x\ dx\) = ?

  1. 1
  2. 0
  3. -1
  4. π

Answer (Detailed Solution Below)

Option 2 : 0

Odd and even function Question 5 Detailed Solution

Concept:

  • If f(x)is an even function, then \(\rm \int_{-a}^{\ \ a}{f(x)\ dx}=2\int_{0}^{a}{f(x)\ dx}\).
  • If f(x)is an odd function, then \(\rm \int_{-a}^{\ \ a}{f(x)\ dx=0}\).

 

Calculation:

Let f(x) = \(\rm e^{\sin^{-2}x}.\sin^{2n+1}x\). It can also be written as f(x) = \(\rm {{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( \sin x \right)}^{2n+1}}\).

Let us find the expression for f(-x) to compare and check whether it is an even function or odd.

f(-x) = \(\rm {{e}^{{{\left[ {{\sin }^{-1}}(-x) \right]}^{2}}}}.{{\left[ \sin (-x) \right]}^{2n+1}}\)

Using the fact that \(\rm \sin \left( -\theta \right)=-\sin \theta\) and \(\rm {{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x\), we get:

⇒ f(-x) = \(\rm {{e}^{{{\left[ -{{\sin }^{-1}}x \right]}^{2}}}}.{{\left[ -\sin x \right]}^{2n+1}}\)

⇒ f(-x) = \(\rm {{e}^{{{\left( -1 \right)}^{2}}{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( -1 \right)}^{2n+1}}{{\left( \sin x \right)}^{2n+1}}\)

Since 2n+1 is odd for any value of n, we get:

⇒ f(-x) = \(\rm {{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.\left( -1 \right){{\left( \sin x \right)}^{2n+1}}\)

⇒ f(-x) = -f(x)

This means that f(x) is an odd function and therefore \(\rm \int\limits_{-a}^{a}f(x)\ dx\) must be 0, for any real number a.

\(\rm \int_{-\pi /2}^{\ \ \pi /2}e^{\sin^{-2x}}.\sin^{2n+1}x\ dx\) = 0 is the answer.

Odd and even function Question 6:

What is \(\rm\displaystyle\int_{-a}^a (x^2+sin \ x) dx\) equal to?

  1. a
  2. 0
  3. \(\rm \frac{2a^{2}}{3}\)
  4. \(\rm \frac{2a^{3}}{3}\)

Answer (Detailed Solution Below)

Option 4 : \(\rm \frac{2a^{3}}{3}\)

Odd and even function Question 6 Detailed Solution

Concept:

If f(x)  is even function then f(-x) = f(x)

If f(x)  is odd function then f(-x) = -f(x)

Properties of definite integral

If f(x)  is even function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = 2\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}}\)

If f(x)  is odd function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} =0\)

 

Calculation:

Let I = \(\rm\displaystyle\int_{-a}^a (x^2+sin \ x) dx\)

\(= \rm\displaystyle\int_{-a}^a x^2 \; dx+ \displaystyle\int_{-a}^a sin \ x\; dx\)

= I1 + I2

Now, 

I1 \(= \rm\displaystyle\int_{-a}^a x^2 \; dx \)

Here f(x) = x2

Replace x by -x, we get

⇒ f(-x) = (-x)2 = x2

⇒ f(-x) = f(x)

So, f(x) is even function.

As we know, If f(x) even function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = 2\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}}\)

Therefore, I1 = \(2\rm\displaystyle\int_{0}^a x^2 \; dx \)

\(= \rm 2\times [\frac{x^{3}}{3}]_0^a\)

\(= \rm 2\times [\frac{a^{3}}{3}-0] = \frac{2a^{3}}{3}\)

Now, 

I2 = \(\rm \displaystyle\int_{-a}^a sin \ x\; dx\)

Here f(x) = sin x

Replace x by -x, we get

⇒ f(-x) = sin (-x) = -sin x                (∵ sin (-θ) = - sin θ)

⇒ f(-x) = -f(x)

So, f(x) is odd function.

As we know, If f(x) even function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} =0\)

 

I = I1 + I2 = \(\rm \frac{2a^{3}}{3}\) + 0 = \(\rm \frac{2a^{3}}{3}\)

Odd and even function Question 7:

\(\int_{-2}^{2} x^4 \left( 4 - x^2 \right)^{\frac{7}{2}} dx =\)

  1. \( 4\pi \)
  2. \(\frac{\pi}{16}\)
  3. \(28\pi\)
  4. \(\frac{3\pi}{128}\)

Answer (Detailed Solution Below)

Option 3 : \(28\pi\)

Odd and even function Question 7 Detailed Solution

Concept

Wallis formula for definite integrals:

\(\int_{0}^{π/2} \sin^m x \cos^n x dx = \frac{(m-1)(m-3)...(n-1)(n-3)...}{(m+n)(m+n-2)...(2~or~1)} \cdot \frac{π}{2}\)

If m, n are both positive integers.

Calculation:

Given:

I = \(\int_{-2}^{2} x^4(4-x^2)^{\frac{7}{2}} dx\).

Let \(x = 2\sin\theta\), so \(dx = 2\cos\theta d\theta\).

When \(x = -2\), \(\sin\theta = -1\), so \(\theta = -\frac{π}{2}\).

When \(x = 2\), \(\sin\theta = 1\), so \(\theta = \frac{π}{2}\).

Then the integral becomes:

\(\int_{-\frac{π}{2}}^{\frac{π}{2}} (2\sin\theta)^4 (4 - (2\sin\theta)^2)^{\frac{7}{2}} 2\cos\theta d\theta\)

\(= \int_{-\frac{π}{2}}^{\frac{π}{2}} 16\sin^4\theta (4 - 4\sin^2\theta)^{\frac{7}{2}} 2\cos\theta d\theta\)

\(= \int_{-\frac{π}{2}}^{\frac{π}{2}} 16\sin^4\theta (4(1 - \sin^2\theta))^{\frac{7}{2}} 2\cos\theta d\theta\)

\(= \int_{-\frac{π}{2}}^{\frac{π}{2}} 16\sin^4\theta (4\cos^2\theta)^{\frac{7}{2}} 2\cos\theta d\theta\)

\(= \int_{-\frac{π}{2}}^{\frac{π}{2}} 16\sin^4\theta (2^2\cos^2\theta)^{\frac{7}{2}} 2\cos\theta d\theta\)

\(= \int_{-\frac{π}{2}}^{\frac{π}{2}} 16\sin^4\theta \cdot 2^7 \cos^7\theta \cdot 2\cos\theta d\theta\)

\(= 2^{12} \int_{-\frac{π}{2}}^{\frac{π}{2}} \sin^4\theta \cos^8\theta d\theta\)

Since the integrand is an even function, we can write:

\(= 2^{13} \int_{0}^{\frac{π}{2}} \sin^4\theta \cos^8\theta d\theta\)

In our case, m = 4 and n = 8, so applying Wallis formula:

\(2^{13} \int_{0}^{\frac{π}{2}} \sin^4\theta \cos^8\theta d\theta = 2^{13} \cdot \frac{3 \cdot 1\cdot 7\cdot5\cdot3\cdot1}{12 \cdot 10 \cdot 8 \cdot 6 \cdot 4 \cdot 2} \cdot \frac{π}{2}\) = 28π 

Hence option 3 is correct.

Odd and even function Question 8:

Let \( f(x) = \int_0^x g(t) dt \), where \( g \) is a non-zero even function. If \( f(x+5)=g(x) \), then \( \int_0^x f(t)dt \) equals -

  1. \( \int_{x+5}^{5} g(t) dt \)
  2. \( 5\int_{x+5}^{5} g(t) dt \)
  3. \( \int^{x+5}_{5} g(t) dt \)
  4. \( 2\int^{x+5}_{5} g(t) dt \)

Answer (Detailed Solution Below)

Option 1 : \( \int_{x+5}^{5} g(t) dt \)

Odd and even function Question 8 Detailed Solution

\( f(x) = \int_0^x g(t) dt \)

\( f(-x) = \int_0^{-x} g(t)dt \)

put \( t = -u \)

\( = - \int^x_0 g(-u) du \)

\( = - \int^x_0 g(u) d (u)=-f(x) \)

\( \Rightarrow f(-x) = -f(x) \)

\( \Rightarrow f(x) \) is an odd function

Also \( f(5 + x) = g(x) \)

\( f(5-x) = g(-x) = g(x) = f(5+x) \)

\( \Rightarrow f(5-x) = f(5+x) \)

Now

\( I = \int_0^x f(t) dt \)

\( t = u + 5 \)

\( I = \int_{-5}^{x-5} f(u +5)du \)

\( =\int_{-5}^{x-5} g(u) du \)

\( =\int_{-5}^{x-5} f'(u) du \)

\( =f (x-5) - f(-5) \)

\( =-f(5-x) + f(5) \)

\( = f(5) - f(5+x) \)

\( =\int^5_{5+x} f'(t) dt = \int _{5+x}^5 g(t) dt \)

Odd and even function Question 9:

Let \(f(x) = a^x (a > 0)\) be written as \(f(x) = f_1(x) + f_2(x)\), where \(f_1(x)\) is an even function of \(f_2(x)\) is an odd function. Then \(f_1(x + y) + f_1(x-y)\) equals

  1. \(2f_1(x) f_1(y)\)
  2. \(2f_1(x) f_2(y)\)
  3. \(2f_1(x+y) f_2(x-y)\)
  4. \(2f_1(x+y) f_1(x-y)\)

Answer (Detailed Solution Below)

Option 1 : \(2f_1(x) f_1(y)\)

Odd and even function Question 9 Detailed Solution

\(f(x) = a^x, a > 0\)

\(f(x) = \dfrac{a^x + a^{-x} + a^x - a^{-x}}{2}\)

\(\Rightarrow f_1(x) = \dfrac{a^x + a^{-x}}{2}\)

\(f_2(x) = \dfrac{a^x - a^{-x}}{2}\)

\(\dfrac{a^{x+y}+ a^{-x-y}}{2} + \dfrac{a^{x-y} + a^{-x+y}}{2}\)

\(= f_1(x) \times 2f_1(y)\)

\(=2f_1(x) f_1(y)\)

Odd and even function Question 10:

Let f : R → R and g : R → R be continuous functions. Then the value of the integral \(\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}[\mathrm{f}(x)+\mathrm{f}(-x)][\mathrm{g}(x)-\mathrm{g}(-x)] \mathrm{d} x\) is

  1. π 
  2. 1
  3. -1
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Odd and even function Question 10 Detailed Solution

Concept Used:

Properties of definite integrals.

If f(x) is an even function, f(-x) = f(x).

If g(x) is an odd function, g(-x) = -g(x).

Calculation:

Given:

\(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [f(x) + f(-x)][g(x) - g(-x)] dx\)

f and g are continuous functions.

Let \(I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [f(x) + f(-x)][g(x) - g(-x)] dx\)

⇒ Let \(F(x) = f(x) + f(-x)\) and \(G(x) = g(x) - g(-x)\)

 \(F(-x) = f(-x) + f(-(-x)) = f(-x) + f(x) = F(x)\)

⇒ F(x) is an even function.

\(G(-x) = g(-x) - g(-(-x)) = g(-x) - g(x) = -[g(x) - g(-x)] = -G(x)\)

⇒ G(x) is an odd function.

\(I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} F(x) G(x) dx\)

Since F(x) is even and G(x) is odd, F(x)G(x) is an odd function.

The integral of an odd function over a symmetric interval [-a, a] is 0.

\(I = 0\)

Hence, option 4) 0 is the correct answer.

Get Free Access Now
Hot Links: yono teen patti teen patti circle teen patti bliss