Odd and even function MCQ Quiz in తెలుగు - Objective Question with Answer for Odd and even function - ముఫ్త్ [PDF] డౌన్లోడ్ కరెన్
Last updated on Apr 1, 2025
Latest Odd and even function MCQ Objective Questions
Top Odd and even function MCQ Objective Questions
Odd and even function Question 1:
Answer (Detailed Solution Below)
Odd and even function Question 1 Detailed Solution
Concept used:
Integral property
Calculation:
Let f1(x) = sinx and f2(x) = cosx
f1(x) = sinx
f1(-x) = sin(-x) = -sinx = -f1(x)
f2(x) = cosx
f2(-x) = cox(-x) = cosx = f2(x)
By integration property f1(x) = 0
⇒
⇒ 2
⇒ 2[sin2 - sin0]
⇒ 2sin2
Odd and even function Question 2:
dx = ________.
Answer (Detailed Solution Below)
Odd and even function Question 2 Detailed Solution
Concept Used:
If f(x) is an odd function, then
If f(x) is an even function, then
Calculation:
Given:
1 is an even function.
⇒
⇒
Hence option 3 is correct
Odd and even function Question 3:
Let
If
Answer (Detailed Solution Below) 2
Odd and even function Question 3 Detailed Solution
Calculation
⇒
⇒
⇒
⇒ f(-x) = - f(x) ⇒ f is also odd
Now,
⇒
Adding (1) and (2)
⇒
⇒
⇒
⇒
∴ α = 2
Odd and even function Question 4:
Let f(x) and ϕ(x) be two continuous functions on R satisfying
I. If f(x) is an even function, then ϕ(x) is also even.
II. If f(x) is an even function, then ϕ(x) is an odd function.
III. f(x) and ϕ(x) are independent.
Which of the above statement(s) is/are correct?
Answer (Detailed Solution Below)
Odd and even function Question 4 Detailed Solution
Concept:
The indefinite integral of an even function is an odd function plus constant.
That is , If f(x) is an even function, and f(x) dx = F(x) + C
Then F(x) is an odd function.
Calculation:
Given, f(x) and ϕ(x) be two continuous functions on R satisfying
Let ∫ f(x) dx = F(x)
⇒
⇒
If f(x) is an even function
⇒ f(-x) = f(x)
⇒ F(x) is an odd function
⇒ F(-x) = - F(x)
Now,
⇒
⇒
⇒
⇒
Comparing (i) and (ii), we get
ϕ(x) is neither odd nor even function when f(x) is even.
So, ϕ(x) and f(x) are independent function.
∴ The correct answer is option (3).
Odd and even function Question 5:
= ?
Answer (Detailed Solution Below)
Odd and even function Question 5 Detailed Solution
Concept:
- If f(x)is an even function, then
. - If f(x)is an odd function, then
.
Calculation:
Let f(x) =
Let us find the expression for f(-x) to compare and check whether it is an even function or odd.
f(-x) =
Using the fact that
⇒ f(-x) =
⇒ f(-x) =
Since 2n+1 is odd for any value of n, we get:
⇒ f(-x) =
⇒ f(-x) = -f(x)
This means that f(x) is an odd function and therefore
∴
Odd and even function Question 6:
What is
Answer (Detailed Solution Below)
Odd and even function Question 6 Detailed Solution
Concept:
If f(x) is even function then f(-x) = f(x)
If f(x) is odd function then f(-x) = -f(x)
Properties of definite integral
If f(x) is even function then
If f(x) is odd function then
Calculation:
Let I =
= I1 + I2
Now,
I1
Here f(x) = x2
Replace x by -x, we get
⇒ f(-x) = (-x)2 = x2
⇒ f(-x) = f(x)
So, f(x) is even function.
As we know, If f(x) even function then
Therefore, I1 =
Now,
I2 =
Here f(x) = sin x
Replace x by -x, we get
⇒ f(-x) = sin (-x) = -sin x (∵ sin (-θ) = - sin θ)
⇒ f(-x) = -f(x)
So, f(x) is odd function.
As we know, If f(x) even function then
I = I1 + I2 =
Odd and even function Question 7:
Answer (Detailed Solution Below)
Odd and even function Question 7 Detailed Solution
Concept
Wallis formula for definite integrals:
If m, n are both positive integers.
Calculation:
Given:
I =
Let
When
When
Then the integral becomes:
Since the integrand is an even function, we can write:
In our case, m = 4 and n = 8, so applying Wallis formula:
Hence option 3 is correct.
Odd and even function Question 8:
Let
Answer (Detailed Solution Below)
Odd and even function Question 8 Detailed Solution
put
Also
Now
Odd and even function Question 9:
Let
Answer (Detailed Solution Below)
Odd and even function Question 9 Detailed Solution
0\)
Odd and even function Question 10:
Let f : R → R and g : R → R be continuous functions. Then the value of the integral
Answer (Detailed Solution Below)
Odd and even function Question 10 Detailed Solution
Concept Used:
Properties of definite integrals.
If f(x) is an even function, f(-x) = f(x).
If g(x) is an odd function, g(-x) = -g(x).
Calculation:
Given:
f and g are continuous functions.
Let
⇒ Let
⇒ F(x) is an even function.
⇒ G(x) is an odd function.
Since F(x) is even and G(x) is odd, F(x)G(x) is an odd function.
The integral of an odd function over a symmetric interval [-a, a] is 0.
⇒
Hence, option 4) 0 is the correct answer.