A series LCR circuit with inductance 10H, capacitance 10 μF, resistance 50Ω is connected to an ac source of voltage, V = 200 sin(100t) volt. If the resonant frequency of the LCR circuit is vo and the frequency of the ac source is v, then:

  1. \(v=100 \mathrm{~Hz} ; v_{0}=\frac{100}{\pi} \mathrm{Hz}\)
  2. vo = v = 50 Hz
  3. \(v_{o}=v=\frac{50}{\pi} \mathrm{Hz}\)
  4. \(v_{o}=\frac{50}{\pi} \mathrm{Hz}, \nu=50 \mathrm{~Hz}\)

Answer (Detailed Solution Below)

Option 3 : \(v_{o}=v=\frac{50}{\pi} \mathrm{Hz}\)
Free
CT 1: Botany (Cell:The Unit of Life)
30 K Users
25 Questions 100 Marks 20 Mins

Detailed Solution

Download Solution PDF

Concept: 

The resonant frequency of LCR circuit = \(\upsilon_{0} = \frac{1}{2π }\sqrt{\frac{1}{LC}} \)     ----- (1)

The frequency of ac source is = v = ω/2π    ----- (2)

Here, V = 200 sin (100 t) = 200 sin (ωt)

Calculation:

Given: L = inductance = 10 H , resistance R = 50 Ω  , capacitance (c) = 10 μF, angular velocity = ω = 100 rad/s

V = 200 sin (100 t)

Resonant frequency = ?, the frequency of AC source = ?

From equation (1) we get: 

Resonant frequency, \(\upsilon_{0} = \frac{1}{2π }\sqrt{\frac{1}{LC}} \)  ⇒ \(\upsilon_{0} = \frac{1}{2\times 3/14}\sqrt{\frac{1}{10\times 10\times 10^{-6}}} = 50/π \)

νo = 50/π      ----- (3) 

The frequency of ac source = v = ω/2π = 100/2π = 50/π 

Hence, Option 3) is correct.

Latest NEET Updates

Last updated on Jun 3, 2025

->NEET provisional answer key 2025 was made available on June 3, 2025 on the official website for the students to check.

->NEET 2025 exam is over on May 4, 2025.

-> The NEET 2025 Question Papers PDF are now available.

-> NTA has changed the NEET UG Exam Pattern of the NEET UG 2025. Now, there will be no Section B in the examination.

-> Candidates preparing for the NEET Exam, can opt for the latest NEET Mock Test 2025

-> NEET aspirants can check the NEET Previous Year Papers for their efficient preparation. and Check NEET Cut Off here.

More Electromagnetic Oscillations and Alternating Current Questions

Get Free Access Now
Hot Links: teen patti online game teen patti tiger teen patti yas teen patti rich