Find the angle between the line \(\frac{{x - 2}}{1} = \frac{{y + 3}}{{ - \;2}} = \frac{{z + 4}}{- \ 3}\) and the plane 2x - 3y + z - 5 = 0 ?

  1. \({\sin ^{ - 1}}\left( {\frac{11}{{14}}} \right)\)
  2. \({\sin ^{ - 1}}\left( {\frac{13}{{14}}} \right)\)
  3. \({\sin ^{ - 1}}\left( {\frac{3}{{14}}} \right)\)
  4. \({\sin ^{ - 1}}\left( {\frac{5}{{14}}} \right)\)

Answer (Detailed Solution Below)

Option 4 : \({\sin ^{ - 1}}\left( {\frac{5}{{14}}} \right)\)
Free
Agniveer Navy SSR Full Test - 01
4.1 K Users
100 Questions 100 Marks 60 Mins

Detailed Solution

Download Solution PDF

Concept:

If θ is the angle between the line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\) and the plane a2x + by + c2z + d = 0 then

\(\sin \theta = \frac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\left( {\sqrt {a_1^2 + b_1^2 + c_1^2} } \right)\left( {\sqrt {a_2^2 + b_2^2 + c_2^2} } \right)}}\)

Calculation:

Given: Equation of line is \(\frac{{x - 2}}{1} = \frac{{y + 3}}{{ - \;2}} = \frac{{z + 4}}{- \ 3}\) and equation of plane is 2x - 3y + z - 5 = 0.

As we know that the angle between the line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\) and the plane a2x + by + c2z + d = 0  is given by: \(\sin \theta = \frac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\left( {\sqrt {a_1^2 + b_1^2 + c_1^2} } \right)\left( {\sqrt {a_2^2 + b_2^2 + c_2^2} } \right)}}\)

Here, a1 = 1, b1 = - 2, c1 = - 3, a2 = 2, b2 = - 3 and c2 = 1.

⇒ a1⋅ a2 + b1 ⋅ b2 + c1 ⋅ c2 = 2 + 6 - 3 = 5

\(⇒ \sqrt {a_1^2 + b_1^2 + c_1^2} = \sqrt {14} \) and \(\;\sqrt {a_2^2 + b_2^2 + c_2^2} = \sqrt {14} \)

\(\Rightarrow \sin \theta = \frac{5}{{14}}\)

\(\Rightarrow \theta = {\sin ^{ - 1}}\left( {\frac{5}{{14}}} \right)\)

Latest Indian Navy Agniveer SSR Updates

Last updated on Jun 20, 2025

-> The Indian Navy SSR Agniveeer Merit List has been released on the official website.

-> The Indian Navy Agniveer SSR CBT Exam was conducted from 25th to 26th May 2025.

->The application window was open from 29th March 2025 to 16th April 2025.  

-> The Indian Navy SSR Agniveer Application Link is active on the official website of the Indian Navy.

.->Only unmarried males and females can apply for Indian Navy SSR Recruitment 2025.

-> The selection process includes a Computer Based Test, Written Exam, Physical Fitness Test (PFT), and  Medical Examination.

->Candidates Qualified in 10+2 with Mathematics & Physics from a recognized Board with a minimum 50% marks in aggregate can apply for the vacancy.

-> With a salary of Rs. 30,000, it is a golden opportunity for defence job seekers.

-> Candidates must go through the Indian Navy SSR Agniveer Previous Year Papers and Agniveer Navy SSR mock tests to practice a variety of questions for the exam.

Get Free Access Now
Hot Links: all teen patti master teen patti vungo teen patti master gold apk teen patti cash teen patti gold download apk