Question
Download Solution PDFसीधी रेखा \(\frac {x + 1}{2} = \frac {y - 2}{5} = \frac {z + 3}{4}\) और \(\frac {x - 1}{1} = \frac {y + 2}{2} = \frac {z - 3}{-3}\) के बीच का कोण क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
रेखाओं के बीच का कोण:
रेखाओं के बीच का कोण \(\rm \frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\) निम्न द्वारा ज्ञात किया गया है:
\(\rm \cos θ = \frac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\left( {\sqrt {a_1^2 + b_1^2 + c_1^2} } \right) ⋅ \left( {\sqrt {a_2^2 + b_2^2 + c_2^2} } \right)}}\), जहाँ a1, b1, c1, a2, b2 और c2 दिशा अनुपात हैं।
गणना:
दिया गया है: \(\frac {x + 1}{2} = \frac {y - 2}{5} = \frac {z + 3}{4}\) और \(\frac {x - 1}{1} = \frac {y + 2}{2} = \frac {z - 3}{-3}\)
रेखाओं के दिशा अनुपात a1 = 2, b1 = 5, c1 = 4 और a2 = 1, b2 = 2 , c2 = -3 हैं।
चूँकि हम जानते हैं, रेखाओं के बीच का कोण निम्न द्वारा ज्ञात किया गया है \(\rm \cos θ = \frac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\left( {\sqrt {a_1^2 + b_1^2 + c_1^2} } \right) ⋅ \left( {\sqrt {a_2^2 + b_2^2 + c_2^2} } \right)}}\)
\(\Rightarrow \rm \cos θ = \frac{{{2} \times {1} + {5}\times{2} + {4}\times{-3}}}{{\left( {\sqrt {2^2 + 5^2 + 4^2} } \right) ⋅ \left( {\sqrt {1^2 + 2^2 + (-3)^2} } \right)}} = 0\)
∴ θ = 90°
Last updated on Jul 17, 2025
-> RPSC 2nd Grade Senior Teacher Exam 2025 Notification has been released on 17th July 2025
-> 6500 vacancies for the post of RPSC Senior Teacher 2nd Grade has been announced.
-> RPSC 2nd Grade Senior Teacher Exam 2025 applications can be submitted online between 19th August and 17th September 2025
-> The Exam dates are yet to be announced.