\(\rm x^2{ dy\over dx}= x^2+xy+y^2\) का हल क्या होगा?

  1. \(\rm logx= tan^{-1}{y\over x}+c\)
  2. \(\rm logx= tan^{-1}{x\over y}+c\)
  3. \(\rm logy= tan^{-1}{x\over y}+c\)
  4. \(\rm logy= tan^{-1}{y\over x}+c\)

Answer (Detailed Solution Below)

Option 1 : \(\rm logx= tan^{-1}{y\over x}+c\)
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

कुछ उपयोगी सूत्र निम्न हैं:

\(\rm \int{ dx\over x}=logx+c\)

\(\rm \int{ dx \over {a^2+x^2}}={1\over a}tan^{-1}x+c\)

गणना:

\(\rm x^2{ dy\over dx}= x^2+xy+y^2\)

\(\rm { dy\over dx}= 1+{y\over x}+({y\over x})^2\)

y = vx और \(\rm {{dy}\over {dx}} = v+x {{dv}\over{dx}} \) रखने पर

⇒ \(\rm v+x{ dv\over dx}= 1+v+v^2\)

⇒ \(\rm x{ dv\over dx}= 1+v^2\)

दोनों पक्षों का समाकलन करने पर हमें निम्न प्राप्त होता है, 

\(\rm \int{ dx\over x}=\int{ dv \over {1+v^2}}\)

⇒ \(\rm logx= tan^{-1}v+c\), c = समाकलन का स्थिरांक

v का मान रखने पर हमें निम्न प्राप्त होता है,

∴ \(\rm \log x= tan^{-1}{y\over x}+c\)

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Solution of Differential Equations Questions

Get Free Access Now
Hot Links: teen patti master download teen patti wealth teen patti sweet