Let β„“2 = {(π‘₯1, π‘₯2, π‘₯3, … ) ∢ π‘₯𝑛 ∈ ℝ for all 𝑛 ∈ β„• and \(\rm \Sigma_{n=1}^\infty x_n^2<\infty \}\)

For a sequence (π‘₯1, π‘₯2, π‘₯3, … ) ∈ β„“2 , define β€–(π‘₯1, π‘₯2, π‘₯3, … )β€–2\(\rm (\Sigma_{n=1}^\infty x_n^2)^{\frac{1}{2}}\)

Let 𝑆 ∢ (β„“2 , β€–⋅β€–2) → (β„“2 , β€–⋅β€–2) and 𝑇 ∢ (β„“2 , β€–⋅β€–2) → (β„“2 , β€–⋅β€–2) be defined by

𝑆(π‘₯1, π‘₯2, π‘₯3, … ) = (𝑦1, 𝑦2, 𝑦3, … ), where 𝑦𝑛 = \(\rm \left\{\begin{matrix}0,&n=1\\\ x_{n-1},& n\ge2\end{matrix}\right.\)

𝑇(π‘₯1, π‘₯2, π‘₯3, … ) = (𝑦1, 𝑦2, 𝑦3, … ), where 𝑦𝑛\(\rm \left\{\begin{matrix}0,&n\ is\ odd\\\ x_{n},& n\ is\ even\end{matrix}\right.\)

Then

  1. 𝑆 is a compact linear map and 𝑇 is NOT a compact linear map
  2. 𝑆 is NOT a compact linear map and 𝑇 is a compact linear map
  3. both 𝑆 and 𝑇 are compact linear maps 
  4. NEITHER 𝑆 NOR 𝑇 is a compact linear map

Answer (Detailed Solution Below)

Option 4 : NEITHER 𝑆 NOR 𝑇 is a compact linear map

Detailed Solution

Download Solution PDF

Explanation -

The correct option is (4).

More Analysis Questions

Get Free Access Now
Hot Links: teen patti pro teen patti jodi dhani teen patti teen patti master apk download teen patti master downloadable content