The Hückel molecular orbital of benzene that is degenerate with the molecular orbital \(\frac{1}{2}\)2 + χ3 − χ5 − χ6), is

This question was previously asked in
CSIR-UGC (NET) Chemical Science: Held on (15 Dec 2019)
View all CSIR NET Papers >
  1. \(\frac{1}{\sqrt{12}}\)(2χ1 + χ2 − χ3 − 2χ4 − χ5 + χ6)
  2. \(\frac{1}{2}\)2 − χ3 + χ5 − χ6)
  3. \(\frac{1}{\sqrt{12}}\)(2χ1 − χ2 − χ3 + 2χ4 − χ5 − χ6)
  4. \(\frac{1}{\sqrt{6}}\)1 − χ2 + χ3 − χ4 + χ5 − χ6)

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{\sqrt{12}}\)(2χ1 + χ2 − χ3 − 2χ4 − χ5 + χ6)
Free
Seating Arrangement
3.3 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Explanation:-

  • For, the Hückel molecular orbital 

\(\frac{1}{2}\)2 + χ3 − χ5 − χ6), the number of nodes is 2,

  • Thus, the degenerate molecular orbital with this molecular orbital must also have 2 nodes.

F1 Teaching Arbaz 29-05-2023 Ankit D1

(1) For the molecular orbital \(\frac{1}{\sqrt{12}}\)(2χ1 + χ2 − χ3 − 2χ4 − χ5 + χ6)

The number of nodes is = 2

(2) For the molecular orbital \(\frac{1}{2}\)2 − χ3 + χ5 − χ6)

The number of nodes = 3

(3) For the molecular orbital \(\frac{1}{\sqrt{12}}\)(2χ1 − χ2 − χ3 + 2χ4 − χ5 − χ6)

The number of nodes = 3

(3) For the molecular orbital \(\frac{1}{\sqrt{6}}\)(χ1 − χ2 + χ3 − χ4 + χ5 − χ6)

The number of nodes = 5

  • Thus, the Hückel molecular orbital of benzene \(\frac{1}{\sqrt{12}}\)(2χ1 + χ2 − χ3 − 2χ4 − χ5 + χ6) also has 2 nodes.

Conclusion:-

Hence, the Hückel molecular orbital of benzene that is degenerate with the molecular orbital \(\frac{1}{2}\)​(χ2 + χ3 − χ5 − χ6), is​ \(\frac{1}{\sqrt{12}}\)(1 + χ2 − χ3 − 2χ4 − χ5 + χ6)

Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Approximate Methods of Quantum Mechanics Questions

Get Free Access Now
Hot Links: teen patti sequence teen patti 50 bonus teen patti bodhi