The number of group homomorphisms from ℤ/150ℤ to ℤ/90ℤ is 

This question was previously asked in
CSIR-UGC (NET) Mathematical Science: Held on (2024 June)
View all CSIR NET Papers >
  1. 30
  2. 60
  3. 45
  4. 10

Answer (Detailed Solution Below)

Option 1 : 30
Free
Seating Arrangement
3.3 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Concept:

If \(\mathbb{Z}/n\mathbb{Z} \) and \(\mathbb{Z}/m\mathbb{Z} \) are cyclic groups, the number of group homomorphisms from \( \mathbb{Z}/n\mathbb{Z} \) to \(\mathbb{Z}/m\mathbb{Z}\) is given by

\(\text{Number of homomorphisms} = \gcd(n, m),\) where \( \gcd(n, m) \) is the greatest common divisor of  n and m.

Explanation:

The number of group homomorphisms from \(\mathbb{Z}/150\mathbb{Z}\) to \(\mathbb{Z}/90\mathbb{Z}\) is given by the greatest common divisor (gcd)

of the orders of the two groups. That is  \(\text{Number of homomorphisms} = \gcd(150, 90)\)
  
Prime factorization of 150: \(150 = 2 \times 3 \times 5^2\)

Prime factorization of 90: \(90 = 2 \times 3^2 \times 5\)

Now, the gcd of 150 and 90 is the product of the lowest powers of the common prime factors:
   
\( \gcd(150, 90) = 2 \times 3 \times 5 = 30 \)

The number of group homomorphisms from \(\mathbb{Z}/150\mathbb{Z}\) to \(\mathbb{Z}/90\mathbb{Z}\) is 30.

Thus, option 1) is correct.

Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Algebra Questions

Get Free Access Now
Hot Links: teen patti master 2025 teen patti comfun card online teen patti casino