The solution of the differential equation

(1 + y2)dx = (tan-1 y - x)dy is

This question was previously asked in
UPSC ESE 2020 Paper 1
View all UPSC IES Papers >
  1. \(x = {\tan ^{ - 1}}y + 1 + c{e^{ - {{\tan }^{ - 1}}y}}\)
  2. \(x = {\tan ^{ - 1}}y - 1 + c{e^{ - {{\tan }^{ - 1}}y}}\)
  3. \(x = \frac{1}{2}{\tan ^{ - 1}}y - 1 + c{e^{ - {{\tan }^{ - 1}}y}}\)
  4. \(x = \frac{1}{2}{\tan ^{ - 1}}y + 1 + c{e^{ - {{\tan }^{ - 1}}y}}\)

Answer (Detailed Solution Below)

Option 2 : \(x = {\tan ^{ - 1}}y - 1 + c{e^{ - {{\tan }^{ - 1}}y}}\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.2 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

Concept:

The standard form of a first-order linear differential equation is,

Form 1: 

\(\frac{{dy}}{{dx}} + Py = Q\)

Where P and Q are the functions of x.

Integrating factor, \(IF = {e^{\smallint Pdx}}\)

Now, the solution for the above differential equation is,

\(y\left( {IF} \right) = \smallint IF.Qdx+C\)

Form 2: 

\(\frac{{dx}}{{dy}} + Px = Q\)

Where P and Q are the functions of y.

Integrating factor, \(IF = {e^{\smallint Pdy}}\)

Now, the solution for the above differential equation is,

\(x\left( {IF} \right) = \smallint IF.Qdy+C\)

Calculation:

The given differential equation is,

(1 + y2) dx = (tan-1 y - x) dy

\( \Rightarrow \frac{{dx}}{{dy}} = \frac{1}{{1 + {y^2}}}\left( {{{\tan }^{ - 1}}y - x} \right)\)

\( \Rightarrow \frac{{dx}}{{dy}} + \frac{x}{{1 + {y^2}}} = \frac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}}\)

Now, it is in the standard form of a first-order linear differential equation.

Here, \(P = \frac{1}{{1 + {y^2}}},Q = \frac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}}\)

Integrating factor:

\( = {e^{\smallint \frac{1}{{1 + {y^2}}}dy}} = {e^{{{\tan }^{ - 1}}y}}\)

Now, the solution of the given differential equation is

\(x\left( {{e^{{{\tan }^{ - 1}}y}}} \right) = \smallint {e^{{{\tan }^{ - 1}}y}}\frac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}}dy + C\)

Let \({\tan ^{ - 1}}y = t\)

\( \Rightarrow \frac{1}{{1 + {y^2}}}dy = dt\)

Now, the solution becomes

\(x\left( {{e^{{{\tan }^{ - 1}}y}}} \right) = \smallint t{e^t}dt + C\)

\( \Rightarrow x\left( {{e^{{{\tan }^{ - 1}}y}}} \right) = t{e^t} - e^t + C\)

\( \Rightarrow x\left( {{e^{{{\tan }^{ - 1}}y}}} \right) = {e^t}(t-1) + C\)

\( \Rightarrow x\left( {{e^{{{\tan }^{ - 1}}y}}} \right) = {e^{\tan^{-1}y}}(\tan^{-1}y-1) + C\)

\( \Rightarrow x = {\tan ^{ - 1}}y - 1 + C{e^{ - {{\tan }^{ - 1}}y}}\)

 

 

Latest UPSC IES Updates

Last updated on May 28, 2025

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

More Differential Equations Questions

Get Free Access Now
Hot Links: real cash teen patti teen patti casino download teen patti noble teen patti gold apk teen patti real cash withdrawal