The value of  \(\rm \displaystyle \lim_{x\rightarrow 0}\frac{\{x\}}{\sin\{x\}}\) is equal to?

Where {x} denote the fractional part of x.

  1. \(\rm \frac{1}{\sin 1}\)
  2. -1
  3. 1
  4. Limit doesn't exist

Answer (Detailed Solution Below)

Option 4 : Limit doesn't exist
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

Concept:

Greatest Integer Function: Greatest Integer Function [x] indicates an integral part of the real number x which is a nearest and smaller integer to x. It is also known as floor of x

  • In general, If n ≤ x ≤ n+1 Then [x] = n   (n ∈ Integer)
  • Means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.

 

Example:

x

[x]

0 ≤ x < 1

0

1 ≤ x < 2

1

2 ≤ x < 3

2

 

Fractional part of x: fractional part will always be non-negative.

  • It is denoted by {x}
  • {x} = x - [x]

 

Existence of Limit:

\( \rm \displaystyle \lim_{x \to a}f(x)\) is exists if \(\rm \displaystyle \lim_{x \to a^{-}}f(x)\) and \(\rm \displaystyle \lim_{x \to a^{+}}f(x)\) exist and \( \rm \displaystyle \lim_{x \to a^{-}}f(x) = \rm \displaystyle \lim_{x \to a^{+}}f(x)\)

 

Calculation:

To Find: Value of \(\rm \displaystyle \lim_{x→ 0}\frac{\{x\}}{\sin\{x\}}\)

As we know {x} = x - [x]

\(\rm \displaystyle \lim_{x→ 0}\frac{\{x\}}{\sin\{x\}}= \rm \displaystyle \lim_{x→ 0}\frac{x- [x]}{\sin (x- [x])}\)

 

RHL = \(\rm \displaystyle \lim_{x→ 0^+}\frac{x- [x]}{\sin (x- [x])}\)

If x → 0+ then [x] = 0

RHL = \(\rm \displaystyle \lim_{x\rightarrow 0^+}\frac{x}{\sin (x)} \)        [Form (0/0)]

Apply L-Hospital Rule,

\(\rm RHL=\rm \displaystyle \lim_{x\rightarrow 0^+}\frac{1}{\cos (x)} = 1\)

RHL = 1

 

LHL = \(\rm \displaystyle \lim_{x→ 0^-}\frac{x- [x]}{\sin (x- [x])}\)

If x → 0- then [x] = -1

\(\rm LHL = \rm \displaystyle \lim_{x \to 0^{-}}\frac{x- (-1)}{\sin (x- (-1))}\\\Rightarrow \rm \displaystyle \lim_{x \to 0^{-}}\frac{x+1}{\sin (x+1)}\\ \Rightarrow \frac{1}{\sin 1}\)

RHL ≠ LHL

So, the limit doesn't exist.

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: teen patti gold download teen patti master online teen patti master 2025 teen patti go