Special Functions MCQ Quiz - Objective Question with Answer for Special Functions - Download Free PDF
Last updated on May 17, 2025
Latest Special Functions MCQ Objective Questions
Special Functions Question 1:
Γ(0.1) Γ(0.2) Γ(0.3)....Γ(0.9) is equal to
Answer (Detailed Solution Below)
Special Functions Question 1 Detailed Solution
Explanation:
We know that
Γ(1/n)Γ(2/n)....Γ(1-1/n) = \((2\pi)^{\frac{n-1}2}\over\sqrt n\)
Putting n = 10 we get
Γ(0.1) Γ(0.2) Γ(0.3)....Γ(0.9) = \(\rm \frac{(2\pi)^{9/2}}{\sqrt{10}}\)
Option (2) is true.
Special Functions Question 2:
If \(f(x) = \frac{[x]}{|x|}\), x ≠ 0, where [⋅] denotes the greatest integer function, then what is the right-hand limit of f(x) at x = 1?
Answer (Detailed Solution Below)
Special Functions Question 2 Detailed Solution
Concept:
Modullus funtion: f(x) = |x|
f(x) = \(\rm \left\{\begin{matrix} x & x > 0\\ -x & x < 0 \end{matrix}\right.\)
Greatest Integer Function:
Greatest Integer Function [x] indicates an integral part of the real number x which is the nearest and smaller integer to x. It is also known as the floor of x
- In general, If n≤ x ≤ n+1 Then [x] = n (n ∈ Integer)
- This means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.
Continuity of function at any point:
\(\rm \lim_{x\rightarrow a^{-}}f(x) = \lim_{x\rightarrow a^{+}} f(x) = \lim_{x\rightarrow a}f(x) \)
A function f(x) is differentiable at x = a, if LHD = RHD
LHD = \(\rm \lim_{x\rightarrow a^{-}}f'(x) = \rm \lim_{h\rightarrow 0^{-}}\frac{f(a-h) - f(a)}{-h}\)
RHD = \(\rm \lim_{x\rightarrow a^{+}}f'(x) = \rm \lim_{h\rightarrow 0^{+}}\frac{f(a+h) - f(a)}{h}\)
Calculation:
\(f(x) = \frac{[x]}{|x|}\)
f(x) = \(\rm \left\{\begin{matrix} \frac{-1}{-x} = \frac{1}{x} & -1 < x < 0 & \\ \frac{0}{x} = 0 & 0 < x < 1 & \\ \frac{1}{x} = \frac{1}{x} & 1 < x < 2 & \end{matrix}\right.\)
At x = 1
RHL = \(\lim_{x \to 0^+} =\lim_{x \to 0^+} \frac{1}{x} = 1\)
∴ The right-hand limit of f(x) at x = 1 is 1.
Special Functions Question 3:
The value of \(\rm \displaystyle \lim_{x\rightarrow 0}\frac{\{x\}}{\sin\{x\}}\) is equal to?
Where {x} denote the fractional part of x.
Answer (Detailed Solution Below)
Special Functions Question 3 Detailed Solution
Concept:
Greatest Integer Function: Greatest Integer Function [x] indicates an integral part of the real number x which is a nearest and smaller integer to x. It is also known as floor of x
- In general, If n ≤ x ≤ n+1 Then [x] = n (n ∈ Integer)
- Means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.
Example:
x |
[x] |
0 ≤ x < 1 |
0 |
1 ≤ x < 2 |
1 |
2 ≤ x < 3 |
2 |
Fractional part of x: fractional part will always be non-negative.
- It is denoted by {x}
- {x} = x - [x]
Existence of Limit:
\( \rm \displaystyle \lim_{x \to a}f(x)\) is exists if \(\rm \displaystyle \lim_{x \to a^{-}}f(x)\) and \(\rm \displaystyle \lim_{x \to a^{+}}f(x)\) exist and \( \rm \displaystyle \lim_{x \to a^{-}}f(x) = \rm \displaystyle \lim_{x \to a^{+}}f(x)\)
Calculation:
To Find: Value of \(\rm \displaystyle \lim_{x→ 0}\frac{\{x\}}{\sin\{x\}}\)
As we know {x} = x - [x]
\(\rm \displaystyle \lim_{x→ 0}\frac{\{x\}}{\sin\{x\}}= \rm \displaystyle \lim_{x→ 0}\frac{x- [x]}{\sin (x- [x])}\)
RHL = \(\rm \displaystyle \lim_{x→ 0^+}\frac{x- [x]}{\sin (x- [x])}\)
If x → 0+ then [x] = 0
RHL = \(\rm \displaystyle \lim_{x\rightarrow 0^+}\frac{x}{\sin (x)} \) [Form (0/0)]
Apply L-Hospital Rule,
\(\rm RHL=\rm \displaystyle \lim_{x\rightarrow 0^+}\frac{1}{\cos (x)} = 1\)
RHL = 1
LHL = \(\rm \displaystyle \lim_{x→ 0^-}\frac{x- [x]}{\sin (x- [x])}\)
If x → 0- then [x] = -1
\(\rm LHL = \rm \displaystyle \lim_{x \to 0^{-}}\frac{x- (-1)}{\sin (x- (-1))}\\\Rightarrow \rm \displaystyle \lim_{x \to 0^{-}}\frac{x+1}{\sin (x+1)}\\ \Rightarrow \frac{1}{\sin 1}\)
RHL ≠ LHL
So, the limit doesn't exist.
Special Functions Question 4:
Which of the following statements is/are true:
1. sin x is a periodic function with period 2π
2. cos x is a periodic function with period 2π
Answer (Detailed Solution Below)
Special Functions Question 4 Detailed Solution
Concept:
Periodic function:
A function f is said to be periodic function with period p if f(x + p) = f(x) ∀ x.
The period of sin x and cos x is 2π
Calculation:
Statement 1: sin x is a periodic function with period 2π
As we know that, sin x and cos x are periodic function with period 2π.
So, statement 1 is true.
Statement 2: cos x is a periodic function with period 2π
As we know that, sin x and cos x are periodic function with period 2π.
So, statement 2 is true.
Hence, option C is the right answer.
Special Functions Question 5:
Let f(x) = [x], where [.] is the greatest integer function and g(x) = sin x be two real valued functions over R.
Which of the following statements is correct?
Answer (Detailed Solution Below)
Special Functions Question 5 Detailed Solution
Concept:
1. Greatest Integer Function: Greatest Integer Function [x] indicates an integral part of the real number x which is nearest and smaller integer to x. It is also known as floor of x
- In general, If \(n \le x\; \le n + 1\) Then [x] = n (n ∈ Integer)
- Means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.
Example:
x |
[x] |
\(0 \le x\; \le 1\) |
0 |
\(1 \le x\; \le 2\) |
1 |
2. A function f(x) is said to be continuous at a point x = a, in its domain if \(\mathop {\lim }\limits_{x \to {\rm{a}}} f\left( x \right) = f\left( a \right)\) exists or its graph is a single unbroken curve.
f(x) is Continuous at x = a ⇔ \({\rm{\;}}\mathop {\lim }\limits_{x \to {{\rm{a}}^ + }} f\left( x \right){\rm{\;}} = {\rm{\;}}\mathop {\lim }\limits_{x \to {{\rm{a}}^ - }} f\left( x \right){\rm{\;}} = {\rm{\;}}\mathop {\lim }\limits_{x \to {\rm{a}}} f\left( x \right)\)
Calculation:
For f(x) = [x]:
LHL = \(\mathop {\lim }\limits_{{\rm{x}} \to {0^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ - }} \left[ {\rm{x}} \right] = \left[ {0 - {\rm{h}}} \right] = - 1\)
\({\rm{RHL}} = \mathop {\lim }\limits_{{\rm{x}} \to {0^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {0^ + }} \left[ {\rm{x}} \right] = \left[ {0 + {\rm{h}}} \right] = 0\)
LHL ≠ RHL, so f(x) is discontinuous at x = 0
For g(x) = sin x
\({\rm{LHL}} = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ - }} {\rm{g}}\left( {\rm{x}} \right) = {\rm{\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ - }} {\rm{sinx}} = 0\)
\({\rm{RHL}} = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ + }} {\rm{g}}\left( {\rm{x}} \right) = {\rm{\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ + }} {\rm{sinx}} = 0\)
g (0) = sin (0) = 0
LHL = RHL = g (0), so g(x) is continuous at x = 0
Hence, option (3) is correct.
Top Special Functions MCQ Objective Questions
Let f(x) = [x], where [.] is the greatest integer function and g(x) = sin x be two real valued functions over R.
Which of the following statements is correct?
Answer (Detailed Solution Below)
Special Functions Question 6 Detailed Solution
Download Solution PDFConcept:
1. Greatest Integer Function: Greatest Integer Function [x] indicates an integral part of the real number x which is nearest and smaller integer to x. It is also known as floor of x
- In general, If \(n \le x\; \le n + 1\) Then [x] = n (n ∈ Integer)
- Means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.
Example:
x |
[x] |
\(0 \le x\; \le 1\) |
0 |
\(1 \le x\; \le 2\) |
1 |
2. A function f(x) is said to be continuous at a point x = a, in its domain if \(\mathop {\lim }\limits_{x \to {\rm{a}}} f\left( x \right) = f\left( a \right)\) exists or its graph is a single unbroken curve.
f(x) is Continuous at x = a ⇔ \({\rm{\;}}\mathop {\lim }\limits_{x \to {{\rm{a}}^ + }} f\left( x \right){\rm{\;}} = {\rm{\;}}\mathop {\lim }\limits_{x \to {{\rm{a}}^ - }} f\left( x \right){\rm{\;}} = {\rm{\;}}\mathop {\lim }\limits_{x \to {\rm{a}}} f\left( x \right)\)
Calculation:
For f(x) = [x]:
LHL = \(\mathop {\lim }\limits_{{\rm{x}} \to {0^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ - }} \left[ {\rm{x}} \right] = \left[ {0 - {\rm{h}}} \right] = - 1\)
\({\rm{RHL}} = \mathop {\lim }\limits_{{\rm{x}} \to {0^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {0^ + }} \left[ {\rm{x}} \right] = \left[ {0 + {\rm{h}}} \right] = 0\)
LHL ≠ RHL, so f(x) is discontinuous at x = 0
For g(x) = sin x
\({\rm{LHL}} = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ - }} {\rm{g}}\left( {\rm{x}} \right) = {\rm{\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ - }} {\rm{sinx}} = 0\)
\({\rm{RHL}} = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ + }} {\rm{g}}\left( {\rm{x}} \right) = {\rm{\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ + }} {\rm{sinx}} = 0\)
g (0) = sin (0) = 0
LHL = RHL = g (0), so g(x) is continuous at x = 0
Hence, option (3) is correct.
The value of \(\rm \displaystyle \lim_{x\rightarrow 0}\frac{\{x\}}{\sin\{x\}}\) is equal to?
Where {x} denote the fractional part of x.
Answer (Detailed Solution Below)
Special Functions Question 7 Detailed Solution
Download Solution PDFConcept:
Greatest Integer Function: Greatest Integer Function [x] indicates an integral part of the real number x which is a nearest and smaller integer to x. It is also known as floor of x
- In general, If n ≤ x ≤ n+1 Then [x] = n (n ∈ Integer)
- Means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.
Example:
x |
[x] |
0 ≤ x < 1 |
0 |
1 ≤ x < 2 |
1 |
2 ≤ x < 3 |
2 |
Fractional part of x: fractional part will always be non-negative.
- It is denoted by {x}
- {x} = x - [x]
Existence of Limit:
\( \rm \displaystyle \lim_{x \to a}f(x)\) is exists if \(\rm \displaystyle \lim_{x \to a^{-}}f(x)\) and \(\rm \displaystyle \lim_{x \to a^{+}}f(x)\) exist and \( \rm \displaystyle \lim_{x \to a^{-}}f(x) = \rm \displaystyle \lim_{x \to a^{+}}f(x)\)
Calculation:
To Find: Value of \(\rm \displaystyle \lim_{x→ 0}\frac{\{x\}}{\sin\{x\}}\)
As we know {x} = x - [x]
\(\rm \displaystyle \lim_{x→ 0}\frac{\{x\}}{\sin\{x\}}= \rm \displaystyle \lim_{x→ 0}\frac{x- [x]}{\sin (x- [x])}\)
RHL = \(\rm \displaystyle \lim_{x→ 0^+}\frac{x- [x]}{\sin (x- [x])}\)
If x → 0+ then [x] = 0
RHL = \(\rm \displaystyle \lim_{x\rightarrow 0^+}\frac{x}{\sin (x)} \) [Form (0/0)]
Apply L-Hospital Rule,
\(\rm RHL=\rm \displaystyle \lim_{x\rightarrow 0^+}\frac{1}{\cos (x)} = 1\)
RHL = 1
LHL = \(\rm \displaystyle \lim_{x→ 0^-}\frac{x- [x]}{\sin (x- [x])}\)
If x → 0- then [x] = -1
\(\rm LHL = \rm \displaystyle \lim_{x \to 0^{-}}\frac{x- (-1)}{\sin (x- (-1))}\\\Rightarrow \rm \displaystyle \lim_{x \to 0^{-}}\frac{x+1}{\sin (x+1)}\\ \Rightarrow \frac{1}{\sin 1}\)
RHL ≠ LHL
So, the limit doesn't exist.
If \(f(x) = \frac{[x]}{|x|}\), x ≠ 0, where [⋅] denotes the greatest integer function, then what is the right-hand limit of f(x) at x = 1?
Answer (Detailed Solution Below)
Special Functions Question 8 Detailed Solution
Download Solution PDFConcept:
Modullus funtion: f(x) = |x|
f(x) = \(\rm \left\{\begin{matrix} x & x > 0\\ -x & x < 0 \end{matrix}\right.\)
Greatest Integer Function:
Greatest Integer Function [x] indicates an integral part of the real number x which is the nearest and smaller integer to x. It is also known as the floor of x
- In general, If n≤ x ≤ n+1 Then [x] = n (n ∈ Integer)
- This means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.
Continuity of function at any point:
\(\rm \lim_{x\rightarrow a^{-}}f(x) = \lim_{x\rightarrow a^{+}} f(x) = \lim_{x\rightarrow a}f(x) \)
A function f(x) is differentiable at x = a, if LHD = RHD
LHD = \(\rm \lim_{x\rightarrow a^{-}}f'(x) = \rm \lim_{h\rightarrow 0^{-}}\frac{f(a-h) - f(a)}{-h}\)
RHD = \(\rm \lim_{x\rightarrow a^{+}}f'(x) = \rm \lim_{h\rightarrow 0^{+}}\frac{f(a+h) - f(a)}{h}\)
Calculation:
\(f(x) = \frac{[x]}{|x|}\)
f(x) = \(\rm \left\{\begin{matrix} \frac{-1}{-x} = \frac{1}{x} & -1 < x < 0 & \\ \frac{0}{x} = 0 & 0 < x < 1 & \\ \frac{1}{x} = \frac{1}{x} & 1 < x < 2 & \end{matrix}\right.\)
At x = 1
RHL = \(\lim_{x \to 0^+} =\lim_{x \to 0^+} \frac{1}{x} = 1\)
∴ The right-hand limit of f(x) at x = 1 is 1.
Which of the following statements is/are true:
1. sin x is a periodic function with period 2π
2. cos x is a periodic function with period 2π
Answer (Detailed Solution Below)
Special Functions Question 9 Detailed Solution
Download Solution PDFConcept:
Periodic function:
A function f is said to be periodic function with period p if f(x + p) = f(x) ∀ x.
The period of sin x and cos x is 2π
Calculation:
Statement 1: sin x is a periodic function with period 2π
As we know that, sin x and cos x are periodic function with period 2π.
So, statement 1 is true.
Statement 2: cos x is a periodic function with period 2π
As we know that, sin x and cos x are periodic function with period 2π.
So, statement 2 is true.
Hence, option C is the right answer.
Special Functions Question 10:
Let f(x) = [x], where [.] is the greatest integer function and g(x) = sin x be two real valued functions over R.
Which of the following statements is correct?
Answer (Detailed Solution Below)
Special Functions Question 10 Detailed Solution
Concept:
1. Greatest Integer Function: Greatest Integer Function [x] indicates an integral part of the real number x which is nearest and smaller integer to x. It is also known as floor of x
- In general, If \(n \le x\; \le n + 1\) Then [x] = n (n ∈ Integer)
- Means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.
Example:
x |
[x] |
\(0 \le x\; \le 1\) |
0 |
\(1 \le x\; \le 2\) |
1 |
2. A function f(x) is said to be continuous at a point x = a, in its domain if \(\mathop {\lim }\limits_{x \to {\rm{a}}} f\left( x \right) = f\left( a \right)\) exists or its graph is a single unbroken curve.
f(x) is Continuous at x = a ⇔ \({\rm{\;}}\mathop {\lim }\limits_{x \to {{\rm{a}}^ + }} f\left( x \right){\rm{\;}} = {\rm{\;}}\mathop {\lim }\limits_{x \to {{\rm{a}}^ - }} f\left( x \right){\rm{\;}} = {\rm{\;}}\mathop {\lim }\limits_{x \to {\rm{a}}} f\left( x \right)\)
Calculation:
For f(x) = [x]:
LHL = \(\mathop {\lim }\limits_{{\rm{x}} \to {0^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ - }} \left[ {\rm{x}} \right] = \left[ {0 - {\rm{h}}} \right] = - 1\)
\({\rm{RHL}} = \mathop {\lim }\limits_{{\rm{x}} \to {0^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {0^ + }} \left[ {\rm{x}} \right] = \left[ {0 + {\rm{h}}} \right] = 0\)
LHL ≠ RHL, so f(x) is discontinuous at x = 0
For g(x) = sin x
\({\rm{LHL}} = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ - }} {\rm{g}}\left( {\rm{x}} \right) = {\rm{\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ - }} {\rm{sinx}} = 0\)
\({\rm{RHL}} = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ + }} {\rm{g}}\left( {\rm{x}} \right) = {\rm{\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {0^ + }} {\rm{sinx}} = 0\)
g (0) = sin (0) = 0
LHL = RHL = g (0), so g(x) is continuous at x = 0
Hence, option (3) is correct.
Special Functions Question 11:
The value of \(\rm \displaystyle \lim_{x\rightarrow 0}\frac{\{x\}}{\sin\{x\}}\) is equal to?
Where {x} denote the fractional part of x.
Answer (Detailed Solution Below)
Special Functions Question 11 Detailed Solution
Concept:
Greatest Integer Function: Greatest Integer Function [x] indicates an integral part of the real number x which is a nearest and smaller integer to x. It is also known as floor of x
- In general, If n ≤ x ≤ n+1 Then [x] = n (n ∈ Integer)
- Means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.
Example:
x |
[x] |
0 ≤ x < 1 |
0 |
1 ≤ x < 2 |
1 |
2 ≤ x < 3 |
2 |
Fractional part of x: fractional part will always be non-negative.
- It is denoted by {x}
- {x} = x - [x]
Existence of Limit:
\( \rm \displaystyle \lim_{x \to a}f(x)\) is exists if \(\rm \displaystyle \lim_{x \to a^{-}}f(x)\) and \(\rm \displaystyle \lim_{x \to a^{+}}f(x)\) exist and \( \rm \displaystyle \lim_{x \to a^{-}}f(x) = \rm \displaystyle \lim_{x \to a^{+}}f(x)\)
Calculation:
To Find: Value of \(\rm \displaystyle \lim_{x→ 0}\frac{\{x\}}{\sin\{x\}}\)
As we know {x} = x - [x]
\(\rm \displaystyle \lim_{x→ 0}\frac{\{x\}}{\sin\{x\}}= \rm \displaystyle \lim_{x→ 0}\frac{x- [x]}{\sin (x- [x])}\)
RHL = \(\rm \displaystyle \lim_{x→ 0^+}\frac{x- [x]}{\sin (x- [x])}\)
If x → 0+ then [x] = 0
RHL = \(\rm \displaystyle \lim_{x\rightarrow 0^+}\frac{x}{\sin (x)} \) [Form (0/0)]
Apply L-Hospital Rule,
\(\rm RHL=\rm \displaystyle \lim_{x\rightarrow 0^+}\frac{1}{\cos (x)} = 1\)
RHL = 1
LHL = \(\rm \displaystyle \lim_{x→ 0^-}\frac{x- [x]}{\sin (x- [x])}\)
If x → 0- then [x] = -1
\(\rm LHL = \rm \displaystyle \lim_{x \to 0^{-}}\frac{x- (-1)}{\sin (x- (-1))}\\\Rightarrow \rm \displaystyle \lim_{x \to 0^{-}}\frac{x+1}{\sin (x+1)}\\ \Rightarrow \frac{1}{\sin 1}\)
RHL ≠ LHL
So, the limit doesn't exist.
Special Functions Question 12:
If \(f(x) = \frac{[x]}{|x|}\), x ≠ 0, where [⋅] denotes the greatest integer function, then what is the right-hand limit of f(x) at x = 1?
Answer (Detailed Solution Below)
Special Functions Question 12 Detailed Solution
Concept:
Modullus funtion: f(x) = |x|
f(x) = \(\rm \left\{\begin{matrix} x & x > 0\\ -x & x < 0 \end{matrix}\right.\)
Greatest Integer Function:
Greatest Integer Function [x] indicates an integral part of the real number x which is the nearest and smaller integer to x. It is also known as the floor of x
- In general, If n≤ x ≤ n+1 Then [x] = n (n ∈ Integer)
- This means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.
Continuity of function at any point:
\(\rm \lim_{x\rightarrow a^{-}}f(x) = \lim_{x\rightarrow a^{+}} f(x) = \lim_{x\rightarrow a}f(x) \)
A function f(x) is differentiable at x = a, if LHD = RHD
LHD = \(\rm \lim_{x\rightarrow a^{-}}f'(x) = \rm \lim_{h\rightarrow 0^{-}}\frac{f(a-h) - f(a)}{-h}\)
RHD = \(\rm \lim_{x\rightarrow a^{+}}f'(x) = \rm \lim_{h\rightarrow 0^{+}}\frac{f(a+h) - f(a)}{h}\)
Calculation:
\(f(x) = \frac{[x]}{|x|}\)
f(x) = \(\rm \left\{\begin{matrix} \frac{-1}{-x} = \frac{1}{x} & -1 < x < 0 & \\ \frac{0}{x} = 0 & 0 < x < 1 & \\ \frac{1}{x} = \frac{1}{x} & 1 < x < 2 & \end{matrix}\right.\)
At x = 1
RHL = \(\lim_{x \to 0^+} =\lim_{x \to 0^+} \frac{1}{x} = 1\)
∴ The right-hand limit of f(x) at x = 1 is 1.
Special Functions Question 13:
Which of the following statements is/are true:
1. sin x is a periodic function with period 2π
2. cos x is a periodic function with period 2π
Answer (Detailed Solution Below)
Special Functions Question 13 Detailed Solution
Concept:
Periodic function:
A function f is said to be periodic function with period p if f(x + p) = f(x) ∀ x.
The period of sin x and cos x is 2π
Calculation:
Statement 1: sin x is a periodic function with period 2π
As we know that, sin x and cos x are periodic function with period 2π.
So, statement 1 is true.
Statement 2: cos x is a periodic function with period 2π
As we know that, sin x and cos x are periodic function with period 2π.
So, statement 2 is true.
Hence, option C is the right answer.
Special Functions Question 14:
\(\text{If} \quad \lim_{x \to 1^+} \frac{(x-1)(6 + \lambda \cos (x-1)) + \mu \sin (1 - x)}{(x-1)^3} = -1, \\ \text{where } \lambda, \mu \in \mathbb{R}, \text{ then } \lambda + \mu \text{ is equal to} \)
Answer (Detailed Solution Below)
Special Functions Question 14 Detailed Solution
Calculation:
\(\text{Put } x = 1 + h\)
\(\lim_{h \to 0} \frac{h(6 + \lambda \cosh h) - \mu \sinh h}{h^3} = -1 \)
\(\implies \lim_{h \to 0} \frac{h \left( 6 + \lambda \left( 1 - \frac{h^2}{2!} + \cdots \right) \right) - \mu \left( h - \frac{h^3}{3!} + \cdots \right)}{h^3} = -1 \)
\(\implies \lim_{h \to 0} \frac{6h + \lambda h - \frac{\lambda h^3}{2} - \mu h + \frac{\mu h^3}{6} + \cdots}{h^3} = -1\)
\(\implies \lim_{h \to 0} \frac{h (6 + \lambda - \mu) - \frac{\lambda h^3}{2} + \frac{\mu h^3}{6} + \cdots}{h^3} = -1 \)
\(\implies \lim_{h \to 0} \left( \frac{6 + \lambda - \mu}{h^2} - \frac{\lambda}{2} + \frac{\mu}{6} + \cdots \right) = -1 \)
\(\text{For the limit to be finite, the coefficient of } \frac{1}{h^2} \text{ must be zero:}\)
\(\quad 6 + \lambda - \mu = 0\)
And the remaining terms give
\(\quad -\frac{\lambda}{2} + \frac{\mu}{6} = -1 \)
\(\text{Solving these simultaneously:} \quad \lambda + \mu = 18 \)
Hence, the correct answer is Option 1.
Special Functions Question 15:
For \( \alpha, \beta, \gamma \in \mathbf{R}, \text{ if } \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1) e^{x^2}}{\sin 2x - \beta x} = 3, \\ \) \({then } \beta + \gamma - \alpha \text{ is equal to:}\)
Answer (Detailed Solution Below)
Special Functions Question 15 Detailed Solution
Concept:
Limit Evaluation Using Series Expansion:
- We use expansions of sine and exponential functions near zero to simplify limits.
- Substitute the series expansions into the expression and simplify the numerator and denominator.
- Compare powers of x in numerator and denominator to evaluate the limit as \(x \to 0\).
Calculation:
Given,
\[ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2}}{\sin 2x - \beta x} = 3 \]
Using expansions near zero:
\[ \sin \alpha x \approx \alpha x, \quad e^{x^2} \approx 1 + x^2, \quad \sin 2x \approx 2x - \frac{(2x)^3}{3!} \]
Simplify the numerator and denominator:
\[ \text{Numerator} \approx x^2 (\alpha x) + (\gamma - 1)(1 + x^2) = \alpha x^3 + (\gamma - 1) + (\gamma - 1)x^2 \]
\[ \text{Denominator} \approx 2x - \frac{8x^3}{6} - \beta x = (2 - \beta) x - \frac{4}{3} x^3 \]
For limit to be finite and non-zero, coefficient of lowest power terms must satisfy:
\[ \gamma - 1 = 0 \Rightarrow \gamma = 1 \]
\[ 2 - \beta = 0 \Rightarrow \beta = 2 \]
Next, equate coefficients of x3 terms:
\[ \lim_{x \to 0} \frac{\alpha x^3}{ - \frac{4}{3} x^3 } = 3 \Rightarrow \frac{\alpha}{-\frac{4}{3}} = 3 \Rightarrow \alpha = -4 \]
\[ \beta + \gamma - \alpha = 2 + 1 - (-4) = 7 \]
∴ The correct answer is Option 1