Euler's Equation MCQ Quiz in हिन्दी - Objective Question with Answer for Euler's Equation - मुफ्त [PDF] डाउनलोड करें

Last updated on Mar 28, 2025

पाईये Euler's Equation उत्तर और विस्तृत समाधान के साथ MCQ प्रश्न। इन्हें मुफ्त में डाउनलोड करें Euler's Equation MCQ क्विज़ Pdf और अपनी आगामी परीक्षाओं जैसे बैंकिंग, SSC, रेलवे, UPSC, State PSC की तैयारी करें।

Latest Euler's Equation MCQ Objective Questions

Euler's Equation Question 1:

यदि \(u = \sin^{-1} \left(\dfrac{x}{y}\right) + \tan^{-1} \left(\dfrac{y}{x}\right)\) है, तब \(x \dfrac{\partial u}{\partial x} + y \dfrac{\partial u}{\partial y}\)का मान क्या है?

  1. U
  2. 2u
  3. 3u
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Euler's Equation Question 1 Detailed Solution

व्याख्या:

यदि \(u = {\sin ^{ - 1}}\left( {\frac{x}{y}} \right) + {\tan ^{ - 1}}\left( {\frac{y}{x}} \right)\)

\(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = ?\)

\(\frac{{\partial u}}{{\partial x}} = \frac{1}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} \times \frac{1}{y} + \frac{1}{{1 + {{\left( {\frac{y}{x}} \right)}^2}}} \times y\left( {\frac{{ - 1}}{{{x^2}}}} \right)\)

\(\frac{{\partial u}}{{\partial y}} = \frac{{ - 1}}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} \times \left( {\frac{x}{{{y^2}}}} \right) + \frac{1}{{1 + {{\left( {\frac{1}{x}} \right)}^2}}} \times \frac{1}{x}\)

\(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = \frac{x}{y} \times \frac{1}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} - x \times \frac{y}{{{x^2}}} \times \frac{1}{{\left[ {1 + {{\left( {\frac{y}{x}} \right)}^2}} \right]}}\)

\( - y \times \left( {\frac{x}{{{y^2}}}} \right) \times \frac{1}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} + y \times \frac{1}{x}\frac{1}{{\left( {1 + {{\left( {\frac{y}{x}} \right)}^2}} \right)}}\)

∴ \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = 0\)

Top Euler's Equation MCQ Objective Questions

यदि \(u = \sin^{-1} \left(\dfrac{x}{y}\right) + \tan^{-1} \left(\dfrac{y}{x}\right)\) है, तब \(x \dfrac{\partial u}{\partial x} + y \dfrac{\partial u}{\partial y}\)का मान क्या है?

  1. U
  2. 2u
  3. 3u
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Euler's Equation Question 2 Detailed Solution

Download Solution PDF

व्याख्या:

यदि \(u = {\sin ^{ - 1}}\left( {\frac{x}{y}} \right) + {\tan ^{ - 1}}\left( {\frac{y}{x}} \right)\)

\(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = ?\)

\(\frac{{\partial u}}{{\partial x}} = \frac{1}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} \times \frac{1}{y} + \frac{1}{{1 + {{\left( {\frac{y}{x}} \right)}^2}}} \times y\left( {\frac{{ - 1}}{{{x^2}}}} \right)\)

\(\frac{{\partial u}}{{\partial y}} = \frac{{ - 1}}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} \times \left( {\frac{x}{{{y^2}}}} \right) + \frac{1}{{1 + {{\left( {\frac{1}{x}} \right)}^2}}} \times \frac{1}{x}\)

\(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = \frac{x}{y} \times \frac{1}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} - x \times \frac{y}{{{x^2}}} \times \frac{1}{{\left[ {1 + {{\left( {\frac{y}{x}} \right)}^2}} \right]}}\)

\( - y \times \left( {\frac{x}{{{y^2}}}} \right) \times \frac{1}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} + y \times \frac{1}{x}\frac{1}{{\left( {1 + {{\left( {\frac{y}{x}} \right)}^2}} \right)}}\)

∴ \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = 0\)

Euler's Equation Question 3:

यदि \(u = {x^{n - 1}}yf\left( {\frac{y}{x}} \right)\) तो \(\frac{{x{\partial ^2}u}}{{\partial {x^2}}} + \frac{{y{\partial ^2}u}}{{\partial y\partial x}}\) किसके बराबर है?

  1. \(\left( {n - 1} \right)\frac{{\partial u}}{{\partial x}}\)
  2. \(\left( {n - 1} \right)\frac{{\partial u}}{{\partial y}}\)
  3. nu
  4. n(n – 1) u

Answer (Detailed Solution Below)

Option 1 : \(\left( {n - 1} \right)\frac{{\partial u}}{{\partial x}}\)

Euler's Equation Question 3 Detailed Solution

अवधारणा :

चरों के रूप में 'x' और 'y' के साथ डिग्री 'n' के सजातीय समीकरण के लिए यूलर की प्रमेय में कहा गया है कि:

\(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = nu\)

विश्लेषण :

हमारे पास है:

\(u = {x^{n - 1}} \cdot yf\left( {\frac{y}{x}} \right)\)

\(u = {x^n} \cdot \left( {\frac{y}{x}} \right)f\left( {\frac{y}{x}} \right)\)

u डिग्री n का एक सजातीय फलन है।

\(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = nu\)

अब आंशिक रूप से x के संबंध में फिर से अवकलन करके हम प्राप्त करते हैं:

\(x\frac{{{\partial ^2}u}}{{\partial x}} + \frac{{\partial u}}{{\partial x}} + y\frac{{{\partial ^2}u}}{{\partial x\partial y}} = n\left( {\frac{{\partial u}}{{\partial x}}} \right)\)

\(\therefore x\frac{{{\partial ^2}u}}{{\partial x}} + y\frac{{{\partial ^2}u}}{{\partial x\partial y}} = \left( {n - 1} \right)\frac{{\partial u}}{{\partial x}}\)

Euler's Equation Question 4:

यदि \(u = \sin^{-1} \left(\dfrac{x}{y}\right) + \tan^{-1} \left(\dfrac{y}{x}\right)\) है, तब \(x \dfrac{\partial u}{\partial x} + y \dfrac{\partial u}{\partial y}\)का मान क्या है?

  1. U
  2. 2u
  3. 3u
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Euler's Equation Question 4 Detailed Solution

व्याख्या:

यदि \(u = {\sin ^{ - 1}}\left( {\frac{x}{y}} \right) + {\tan ^{ - 1}}\left( {\frac{y}{x}} \right)\)

\(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = ?\)

\(\frac{{\partial u}}{{\partial x}} = \frac{1}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} \times \frac{1}{y} + \frac{1}{{1 + {{\left( {\frac{y}{x}} \right)}^2}}} \times y\left( {\frac{{ - 1}}{{{x^2}}}} \right)\)

\(\frac{{\partial u}}{{\partial y}} = \frac{{ - 1}}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} \times \left( {\frac{x}{{{y^2}}}} \right) + \frac{1}{{1 + {{\left( {\frac{1}{x}} \right)}^2}}} \times \frac{1}{x}\)

\(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = \frac{x}{y} \times \frac{1}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} - x \times \frac{y}{{{x^2}}} \times \frac{1}{{\left[ {1 + {{\left( {\frac{y}{x}} \right)}^2}} \right]}}\)

\( - y \times \left( {\frac{x}{{{y^2}}}} \right) \times \frac{1}{{\sqrt {1 - {{\left( {\frac{x}{y}} \right)}^2}} }} + y \times \frac{1}{x}\frac{1}{{\left( {1 + {{\left( {\frac{y}{x}} \right)}^2}} \right)}}\)

∴ \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = 0\)

Get Free Access Now
Hot Links: online teen patti real money teen patti teen patti royal teen patti master 2025 teen patti master online