Solving Linear Differential Equation MCQ Quiz - Objective Question with Answer for Solving Linear Differential Equation - Download Free PDF
Last updated on May 13, 2025
Latest Solving Linear Differential Equation MCQ Objective Questions
Solving Linear Differential Equation Question 1:
The function \(y = f(x)\) is the solution of the differential equation \(\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^4 + 2x}{\sqrt{1 - x^2}}\) in \((-1, 1)\) satisfying \(f(0) = 0\). Then \(\int_{- \frac{\sqrt{3}}{2}}^{ \frac{\sqrt{3}}{2}} f(x)dx\) is
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 1 Detailed Solution
This is a linear differential equation
I.F. \(= e^{\int \dfrac{x}{x^2 -1}dx} = e^{\dfrac{1}{2} ln |x^2 -1|} = \sqrt{1 - x^2}\)
\(\Rightarrow \) solution is
\(y\sqrt{1 - x^2}=\int \dfrac{x(x^3 +2)}{\sqrt{1 - x^2}} \cdot \sqrt{1 -x^2}dx\)
or \( y \sqrt{1 -x^2} = \int (x^4 +2x)dx = \sqrt{x^5}{5} + x^2 +c\)
\(f(0) = 0 \Rightarrow c = 0\)
\(\Rightarrow f(x) \sqrt{1 - x^2} = \dfrac{x^5}{5} + x^2\)
Now,
\(\int_{- \sqrt{3}/ 2}^{\sqrt{3} / 2} f(x) dx = \int_{\sqrt{3}/2}^{\sqrt{3}/2} d\dfrac{x^2}{\sqrt{1- x^2}}dx\) (Using property)
\(= 2 \int_{0}^{\sqrt{3}/2} \dfrac{x^2}{\sqrt{1 -x^2}} dx = 2 \int_0^{\pi/ 3} \dfrac{sin^2 \theta}{cos \theta} cos \theta d \theta\) (Taking \( x = sin \theta\))
\(= 2 \int_{0}^{\pi / 3} sin^2 \theta d \theta = 2 \left [ \frac{\theta}{2} - \frac{sin 2 \theta}{4} \right]_0^{\frac{\pi}{3}} = 2 \left ( \frac{\pi}{6} \right ) - 2 \left ( \frac{\sqrt{3}}{8} \right ) = \frac{\pi}{3} - \frac{\sqrt{3}}{4}\)
Solving Linear Differential Equation Question 2:
If for the solution curve y = f(x) of the differential equation \(\frac{d y}{d x}+(\tan x) y=\frac{2+\sec x}{(1+2 \sec x)^{2}}\), \(x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), f\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{10} \), then \(\mathrm{f}\left(\frac{\pi}{4}\right) \) is equal to
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 2 Detailed Solution
If \( \mathrm{e}^{\int \tan x \mathrm{dx}}=\mathrm{e}^{\operatorname{tn}(\sec \mathrm{x})}=\sec \mathrm{x} \)
\( \therefore \mathrm{y} \cdot \sec \mathrm{x}=\int\left\{\frac{2+\sec \mathrm{x}}{(1+2 \sec \mathrm{x})^{2}}\right\} \sec \mathrm{xdx} \\ \)
\(=\int \frac{2 \cos \mathrm{x}+1}{(\cos \mathrm{x}+2)^{2}} \mathrm{dx} \) Let \( \cos \mathrm{x}=\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}} \)
\(=\int \frac{2\left(\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}\right)+1}{\left(\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}+2\right)^{2}} 2 \mathrm{dt} \)
\(=\int \frac{2-2 \mathrm{t}^{2}+1+\mathrm{t}^{2}}{\left(1-\mathrm{t}^{2}+2+2 \mathrm{t}^{2}\right)^{2}} \times 2 \mathrm{dt} \)
\(=2 \int \frac{3-\mathrm{t}^{2}}{\left(\mathrm{t}^{2}+3\right)^{2}} \mathrm{dt}\)
Let \(\mathrm{t}+\frac{3}{\mathrm{t}}=\mathrm{u}\)
\( \left(1-\frac{3}{t^{2}}\right) d t=d u \)
\(=-2 \int \frac{d u}{u^{2}} \)
\(y \cdot(\sec x)=\frac{2}{u}+c \)
\(y \cdot \sec x=\frac{2}{t+\frac{3}{t}}+c\) .........(I)
At \(x=\frac{\pi}{3}, t=\tan \frac{x}{2}=\frac{1}{\sqrt{3}} \)
\(2 \cdot \frac{\sqrt{3}}{10}=\frac{2}{\frac{1}{\sqrt{3}}+3 \sqrt{3}}+c \)
\(2 \cdot \frac{\sqrt{3}}{10}=\frac{2 \sqrt{3}}{10}+c \Rightarrow C=0 \)
At \(x=\frac{\pi}{4}, \mathrm{t}=\tan \frac{\mathrm{x}}{2}=\sqrt{2}-1 \)
\(\therefore \mathrm{y} \cdot \sqrt{2}=\frac{2}{\sqrt{2}-1+\frac{3}{\sqrt{2}-1}} \)
\(\text { y. } \sqrt{2}=\frac{2(\sqrt{2}-1)}{6-2 \sqrt{2}} \)
\(y=\frac{\sqrt{2}(\sqrt{2}-1)}{2(3-\sqrt{2})}=\frac{1}{\sqrt{2}} \times \frac{2 \sqrt{2}-1}{7}=\frac{4-\sqrt{2}}{14}\)
Solving Linear Differential Equation Question 3:
Match List-I with List-II.
List-I (Function) |
List-II (Interval in which function is increasing) |
||
(A) | \(\frac{x}{\log _{\mathrm{e}} x}\) | (I) | (-∞, -2) ∪ (2, ∞) |
(B) | \(\frac{x}{2}+\frac{2}{x}, x \neq 0\) | (lI) | \(\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)\) |
(C) | xx, x > 0 | (llI) | \(\left(\frac{1}{\mathrm{e}}, ∞\right)\) |
(D) | sinx - cosx | (IV) | (e, ∞) |
Choose the correct answer from the options given below:
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 3 Detailed Solution
Explanation:
List-I (Function) |
List-II (Interval in which function is increasing) |
||
(A) | \(\frac{x}{\log _{\mathrm{e}} x}\) | (I) | (-∞, -2) ∪ (2, ∞) |
(B) | \(\frac{x}{2}+\frac{2}{x}, x \neq 0\) | (lI) | \(\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)\) |
(C) | xx, x > 0 | (llI) | \(\left(\frac{1}{\mathrm{e}}, ∞\right)\) |
(D) | sinx - cosx | (IV) | (e, ∞) |
A. \(\frac{x}{\log_e x} \)
This function is defined for x > 0, as the logarithm function is only defined for positive values of x.
To find the interval in which the function is increasing, take the derivative of \(\frac{x}{\log_e x} \) with respect to x.
After solving, it can be found that the function is increasing when x > e.
So, the correct interval is (IV).
B. \(\frac{x}{2} + \frac{2}{x}, \, x \neq 0 \)
This function is defined for \(x \neq 0. \)
By finding the derivative and setting it to zero,
it can be shown that the function is increasing for x > 2 and x < -2.
So, the correct interval is (I).
C. \( x^x, \, x > 0 \)
This function is increasing for x > 0.
So, the correct interval is (III).
D. \( \sin x - \cos x \)
The derivative of \( \sin x - \cos x \) is \( \cos x + \sin x. \)
Setting this derivative greater than zero gives the interval \(\left( -\frac{\pi}{4}, \frac{\pi}{4} \right) \) , so the correct interval is (II).
Final Answer:
The correct matching is:
(A) → (IV)
(B) → (I)
(C) → (III)
(D) → (II)
The correct option is (3).
Solving Linear Differential Equation Question 4:
The integrating factor of the differential equation \(\left(y \log _{\mathbf{e}} y\right) \frac{d x}{d y}+x=2 \log _{\mathbf{e}} y\) is:
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 4 Detailed Solution
Concept:
Integrating Factor:
- The integrating factor is used to solve linear first-order differential equations.
- For a linear differential equation of the form: dy/dx + P(x)y = Q(x), the integrating factor is given by:
- Integrating Factor = e∫P(x)dx
Calculation:
Given the differential equation:
y loge(y) dx/dy + x = 2 loge(y)
Rewriting the equation:
y loge(y) dx/dy = 2 loge(y) - x
Dividing both sides by y loge(y):
dx/dy = 2/y - x/(y loge(y))
This is in the standard form of a linear first-order differential equation:
dx/dy + P(y) x = Q(y)
Identifying P(y) = 1/(y loge(y)) and Q(y) = 2/y, we find the integrating factor:
μ(y) = e∫P(y)dy = e∫1/(y loge(y))dy
The integral of 1/(y loge(y)) is loge(loge(y)), so:
μ(y) = loge(y)
Hence, the integrating factor is: loge(y)
Solving Linear Differential Equation Question 5:
For \(f(x)=\int \frac{\mathrm{e}^x}{\sqrt{4-\mathrm{e}^{2 x}}} \mathrm{~d} x\), if the point \(\left(0, \frac{\pi}{2}\right)\) satisfies y = f(x), then the constant of integration of the given integral is:
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 5 Detailed Solution
Concept:
Integration and Constant of Integration:
- The problem involves finding the constant of integration for a given integral.
- The integral is of the form:
- \(f(x) = ∫ (e^x) / √(4 - e^{(2x)}) dx \)
- To solve this, we use the substitution method to simplify the integral.
- The substitution used is:
- \(u = e^x \), and hence \(du = e^x dx \)
- The integral then reduces to a standard form:
- ∫ 1 / √(4 - u²) du = \(sin^{-1}(u / 2) + C \)
- We substitute back \(u = e^x \) to get the final result:
- \(f(x) = sin^{-1} (e^x / 2) + C \)
- To find the constant C, we use the initial condition that f(0) = π/2.
Calculation:
Given,
\(f(x) = ∫ (e^x) / √(4 - e^{(2x)} ) dx \)
Substitute \( u = e^x \), so that \(du = e^x dx \).
The integral becomes \( f(x) = sin^{-1} (e^x / 2) + C. \)
Use the initial condition:
f(0) = π/2
Substituting x = 0 into the equation:
\(f(0) = sin^{-1} (e^0 / 2) + C = sin^{-1} (1/2) + C = π/6 + C \)
Set this equal to π/2:
π/6 + C = π/2
Solve for C:
C = π/2 - π/6 = 3π/6 - π/6 = 2π/6 = π/3
Hence, the constant of integration is: C = π/3
Top Solving Linear Differential Equation MCQ Objective Questions
If x2 + y2 + z2 = xy + yz + zx and x = 1, then find the value of \(\rm \frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}\)
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 6 Detailed Solution
Download Solution PDFGiven:
x = 1
x2 + y2 + z2 = xy + yz + zx
Calculations:
x2 + y2 + z2 - xy - yz - zx = 0
⇒(1/2)[(x - y)2 + (y - z)2 + (z - x)2] = 0
⇒x = y , y = z and z = x
But x = y = z = 1
so, \(\rm \frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}\)
= {10(1)4 + 5(1)4 + 7(1)4}/{13(1)2(1)2+ 6(1)2(1)2 + 3(1)2(1)2}
= 22/22
= 1
Hence, the required value is 1.
If x + \(\frac{1}{2x}\) = 3, then evaluate 8x3 + \(\rm \frac{1}{x^3}\).
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 7 Detailed Solution
Download Solution PDFGiven:
x + \(\frac{1}{2x}\) = 3
Concept Used:
Simple calculations is used
Calculations:
⇒ x + \(\frac{1}{2x}\) = 3
On multiplying 2 on both sides, we get
⇒ 2x + \(\frac{1}{x}\) = 6 .................(1)
Now, On cubing both sides,
⇒ \((2x + \frac{1}{x})^3 = 6^3\)
⇒ \(8x^3 + \frac{1}{x^3} + 3(4x^2)(\frac{1}{x})+3(2x)(\frac{1}{x^2})=216\)
⇒ \(8x^3 + \frac{1}{x^3} + 12x+\frac{6}{x}=216\)
⇒ \(8x^3 + \frac{1}{x^3}= 216 - 6(2x+\frac{1}{x})\)
⇒ \(8x^3 + \frac{1}{x^3}= 216- 6(6)\) ..............from (1)
⇒ \(8x^3 + \frac{1}{x^3}= 216- 36\)
⇒ \(8x^3 + \frac{1}{x^3}= 180\)
⇒ Hence, The value of the above equation is 180
If the 9-digit number 83P93678Q is divisible by 72, then what is the value of \(\sqrt {P^2+Q^2+12}\) ?
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 8 Detailed Solution
Download Solution PDFGiven:
9-digit number = 83P93678Q
Divisor = 72
Concept Used:
Divisibility of 8 = Last three digits should be divisible by 8.
Divisibility of 9 = Sum of digits is divisible by 9.
Calculation:
As the divisor 72, is divisible by 8 and 9, so the divisibility will be checked.
For divisible by 8,
78Q should be divisible by 8, so, Q should be 4 as 784 is divisible by 8.
For divisible by 9,
⇒ 8 + 3 + P + 9 + 3 + 6 + 7 + 8 + 4 = 48 + P
For being divisible by 9, the nearest number to be added is 6 which gives 54.
Now, \(\sqrt{P^2+Q^2+12}=\sqrt{6^2+4^2+12}\)
⇒ \(\sqrt{36+16+12}=\sqrt{64}=8\)
Therefore, the required value is 8.
The integrating factor of the differential equation \(\rm \frac{dy}{dx} + xy = x\) is
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 9 Detailed Solution
Download Solution PDFConcept:
Integrating factor, (IF) for a differential equation, \(\rm\frac{dx}{dy}+Px= Q\), where P and Q are given continuous function of y.
IF = \(\rm e^{\int Pdy}\)
Calculation:
Given differential equation
\(\rm \frac{dy}{dx} + xy = x\)
Now, this differential equation is in the form
\(\rm \frac{dy}{dx} + y P(x) = Q(x)\)
where, P(x) = x and Q(x) = x
Integrating Factor (I.F.) = \(\rm e^{\int P(x)} dx\)
I.F. = \(\rm e^{\int x} dx\) = \(\rm e^{\frac{x^{2}}{2}}\)
The solution of the differential equation \(\rm x \dfrac{dy}{dx}-y=3\) represents a family of:
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 10 Detailed Solution
Download Solution PDFConcept:
First Order Linear Differential Equation:
A differential equation of the from \(\rm \dfrac{dy}{dx}\) + P × y = Q, where P and Q are constants or functions of x only, is known as a first order linear differential equation.
Steps to solve a First Order Linear Differential Equation:
- Convert into the standard form \(\rm \dfrac{dy}{dx}\) + P × y = Q, where P and Q are constants or functions of x only.
- Find the Integrating Factor (F) by using the formula: F = \(\rm e^{\int P\ dx}\).
- Write the solution using the formula: \(\rm y\times F=\displaystyle \int (Q\times F)\ dx+C\) where C is the constant of integration.
Calculation:
\(\rm x \dfrac{dy}{dx}-y=3\)
\(\rm \Rightarrow \dfrac{dy}{dx}+\left(\dfrac{-1}{x}\right)y=\dfrac{3}{x}\)
⇒ P = \(\rm \dfrac{-1}{x}\) and Q = \(\rm \dfrac{3}{x}\).
Integrating factor F = \(\rm e^{\int P\ dx}=e^{\int \tfrac{-1}{x}\ dx}=e^{-\ln x}=\dfrac{1}{x}\).
The solution of the given differential equation is:
\(\rm y\times \dfrac{1}{x}=\displaystyle \int \left(\dfrac{3}{x}\times \dfrac{1}{x}\right)\ dx+C\)
\(\rm \Rightarrow \dfrac{y}{x}=3\left(\dfrac{-1}{x}\right)+C \)
⇒ y = Cx - 3, which is the equation of a straight line.
What is the general solution of the differential equation ydx – (x + 2y2) dy = 0?
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 11 Detailed Solution
Download Solution PDFConcept:
Solution of Linear Differential equation:
If the D.E. has a form of \(\frac{{{\rm{dx}}}}{{{\rm{dy}}}} + {\rm{Px}} = {\rm{Q}}\) then, where P and Q are functions of y.
The solution is given as, \({\rm{x}} \times {\rm{I}}.{\rm{F}}.{\rm{\;}} = \smallint {\rm{I}}.{\rm{F}}.{\rm{\;}} \times {\rm{Qdy}} + {\rm{c}}\)
where, I.F. is integrating factor which is given as,
\({\rm{I}}.{\rm{F}}. = {{\rm{e}}^{\smallint {\rm{Pdy}}}}\)
Calculation:
Given: ydx – (x + 2y2) dy = 0
\({\rm{y}}\frac{{{\rm{dx}}}}{{{\rm{dy}}}} = {\rm{x}} + 2{{\rm{y}}^2}\)
\(\Rightarrow \frac{{{\rm{dx}}}}{{{\rm{dy}}}} = \frac{{\rm{x}}}{{\rm{y}}} + 2{\rm{y}}\)
\( \Rightarrow \frac{{{\rm{dx}}}}{{{\rm{dy}}}} - \frac{{\rm{x}}}{{\rm{y}}} = 2{\rm{y}}\)
Differential equation is in form of, \(\frac{{{\rm{dx}}}}{{{\rm{dy}}}} + {\rm{Px}} = {\rm{Q}}\)
Integrating factor, \({\rm{I}}.{\rm{F}}. = {{\rm{e}}^{\smallint {\rm{Pdy}}}}\)
\({\rm{I}}.{\rm{F}}. = {{\rm{e}}^{\smallint - \frac{1}{{\rm{y}}}{\rm{dy}}}}\)
\(\Rightarrow {\rm{I}}.{\rm{F}}. = {{\rm{e}}^{ - \ln {\rm{y}}}}\)
\(\Rightarrow {\rm{I}}.{\rm{F}}. = \frac{1}{{\rm{y}}}\)
Differential equation is given as,
\({\rm{x}} \times \frac{1}{{\rm{y}}} = \smallint \frac{1}{{\rm{y}}} \times \left( {2{\rm{y}}} \right){\rm{dy}} + {\rm{c}}\)
\(\Rightarrow \frac{{\rm{x}}}{{\rm{y}}} = 2{\rm{y}} + {\rm{c}}\)
⇒ x = 2y2 + cy
The integrating factor of the differential equation \(\rm\frac{dy}{dx} + y = \rm\frac{1+y}{x}\) is:
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 12 Detailed Solution
Download Solution PDFConcept:
The solution of the linear differential equation \(\rm\frac{dy}{dx}+P(x)y = Q(x)\) is given by
y × I.F = \(\int{Q(x)(I.F) }dx+ C\)
Where P and Q are the functions of 'x' and I.F = \(e^{\int{P(x)}dx}\)
Calculation:
Given \(\rm\frac{dy}{dx} + y = \rm\frac{1+y}{x}\) ⇒ \(\rm\frac{dy}{dx}\) + y - \(\frac{y}{x}\) = \(\frac{1}{x}\)
⇒ \(\rm\frac{dy}{dx}\) + \((1-\frac{1}{x})\)y = \(\frac{1}{x}\)
This is a differential equation of the form \(\rm\frac{dy}{dx}+P(x)y = Q(x)\)
Here P(x) = 1 - \(\frac{1}{x}\)
Integrating factor (I.F) = \(e^{\int{P(x)}dx}\) = \(e^{\int(1-\frac{1}{x})dx}\) = \(e^{x - \log x}\)
⇒ I.F = \(\frac{e^x}{e^{\log x}}\) = \(\frac{e^x}{x}\)
The integral factor is \(\frac{e^x}{x}\).
The correct answer is option 2.
Find the integral factor of \(\rm {dy\over dx}+ \frac{y}{x} = 3\sin x\)
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 13 Detailed Solution
Download Solution PDFConcept:
In first order linear differential equation;
\(\rm {dy\over dx}+Py=Q\), where P and Q are function of x
Integrating factor (IF) = e∫ P dx
y × (IF) = ∫ Q(IF) dx
Calculation:
\(\rm {dy\over dx}+ \frac{y}{x} = 3\sin x\)
IF = e∫ \(\frac{1}{x}\)dx
⇒ IF = eln x
⇒ IF = x
Solution of the differential equation cos x dy = y (sin x - y) dx, 0 < x <\(\frac{\pi}{2}\) is
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 14 Detailed Solution
Download Solution PDFConcept:
Equation of the form \(\frac{dy}{dx} + Py = Q\) solve by following the steps
- find I.F = \(e^{∫ Pdx}\)
- The solution will be y I.F = ∫ Q I.F dx + C
Formula used:
1. sin θ/cos θ = tan θ 2.1/cos θ = sec θ
3. eln x = x 4. ∫ sec2 x = tan x
Calculation:
cos x dy = y (sin x - y) dx
dy = y×\(\frac{1}{cos x}\)(sin x - y) dx
⇒ dy = (y \(\frac{sin\ x}{cos\ x}\) - y2\(\frac{1}{cos x}\)) dx ⇒ \(dy\over{dx}\) = y tan x - y2 sec x
⇒ \(\frac{1}{y^{2}}\frac{dy}{dx}-\frac{1}{y}tanx=-secx\)
Now, let y = \(1\over{t}\) therefore \(\frac{1}{y^{2}}\frac{dy}{dx}=-\frac{dt}{dx}\)
Putting these values we get
\(-\frac{dt}{dx}-t \ tanx=-secx\) ⇒ \(\frac{dt}{dx}+t \ tanx=secx\)
Now, I.F = \(e^{∫ tan\ x\ dx}=e^{log\ sec\ x}= sec\ x\)
The solution of the equation will be
⇒ t (I.F) = ∫ (I.F) sec x dx + c ⇒ t (sec x) = ∫ (I.F) sec x dx + c
⇒ t sec x = ∫ sec2 x + c ⇒ sec x = (tan x + c)y
∴ The solution of an equation is sec x = (tan x + c)y.
Solve the differential equation x\(\rm \frac {dy}{dx}\) + y = 4x3 + x
Answer (Detailed Solution Below)
Solving Linear Differential Equation Question 15 Detailed Solution
Download Solution PDFConcept:
In the first-order linear differential equation;
\(\rm {dy\over dx}+Py=Q\),
Where P and Q are functions of x
Integrating factor (IF) = e∫ P dx
y × (IF) = ∫ Q(IF) dx
Calculation:
x\(\rm \frac {dy}{dx}\) + y = 4x3 + x
⇒ \(\rm \frac{dy}{dx}+{y\over x}=4x^2+1\)
IF = e∫ \(\rm 1\over x\) dx
⇒ IF = eln x
⇒ IF = x
(∵ eln x = x)
Now, y × (IF) = ∫ Q (IF) dx
⇒ y × x = ∫ (4x2 + 1) × x dx
⇒ yx = ∫ 4x3 + x dx
Integrating,
⇒ yx = x4 + \(\rm x^2\over 2\)+ c (where c is integration constant)
⇒ y = \(\boldsymbol{\rm x^3 + {x\over2}+{c\over x}}\)