Magnetic Force - Definition of B MCQ Quiz in मल्याळम - Objective Question with Answer for Magnetic Force - Definition of B - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 10, 2025

നേടുക Magnetic Force - Definition of B ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Magnetic Force - Definition of B MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Magnetic Force - Definition of B MCQ Objective Questions

Top Magnetic Force - Definition of B MCQ Objective Questions

Magnetic Force - Definition of B Question 1:

A small square loop of wire of side l is placed inside a large square loop of wire L(L>>l). Both loops are coplanar and their centres coincide at point O as shown in figure. The mutual inductance of the system is :

F1 Priyas Physics  20 09 2024 D20

  1. \(\frac{2 \sqrt{2} \mu_0 L^2}{\pi I}\)
  2. \(\frac{\mu_0 I^2}{2 \sqrt{2} \pi L}\)
  3. \(\frac{2 \sqrt{2} \mu_0 I^2}{\pi L}\)
  4. \(\frac{\mu_0 L^2}{2 \sqrt{2} \pi I}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{2 \sqrt{2} \mu_0 I^2}{\pi L}\)

Magnetic Force - Definition of B Question 1 Detailed Solution

 Concept:

  • Mutual Inductance is a measure of the ability of one circuit to induce an electromotive force (EMF) in another circuit through a change in current.
  • The SI unit of mutual inductance is the Henry (H).
  • Magnetic Flux (Φ) is the total magnetic field passing through a given area.
  • The SI unit of magnetic flux is the Weber (Wb).
  • The mutual inductance M between two loops is given by: M = (N₂Φ₂) / I₁,

where Φ₂ = magnetic flux through the second loop due to the current I₁ in the first loop.

  • When a current I flows through a loop of wire, it produces a magnetic field B at a distance from the loop, and the magnetic field strength at the center of a square loop of side length L is given by:
  • B = (μ₀I) / (2L),

Where μ₀ = permeability of free space.

Calculation:

Here,
Side of small loop = l
Side of large loop = L
Current in large loop = i
Permeability of free space = μ₀

We know, ϕ = Mi

⇒ \(\phi \simeq\left[4 \times \frac{\mu_0 i}{4 \pi(L / 2)}\left[\sin 45^{\circ}+\sin 45^{\circ}\right]\right] \times \text { Area }\)

\(\frac{2 \sqrt{2} \mu_0 i}{\pi L} \times I^2\)

⇒ \(M=\frac{\phi}{i}=\frac{2 \sqrt{2} \mu_0 I^2}{\pi L}\)

The mutual inductance of the system is M = \(\frac{2 \sqrt{2} \mu_0 I^2}{\pi L}\)

∴ The correct option is 3

Magnetic Force - Definition of B Question 2:

A light beam is described by E = 800 sin ω \(\left( {{\rm{t}}\,{\rm{ - }}\,\frac{{\rm{x}}}{{\rm{c}}}} \right)\). An electron is allowed to move normal to the propagation of light beam with a speed of 3 × 107 ms-1. What is the maximum magnetic force exerted on the electron?

  1. 1.28 × 10-18 N
  2. 12.8 × 10-18 N
  3. 12.8 × 10-17 N
  4. 1.28 × 10-21 N

Answer (Detailed Solution Below)

Option 2 : 12.8 × 10-18 N

Magnetic Force - Definition of B Question 2 Detailed Solution

CONCEPT:

→The magnetic field exerted on the electron is written as;

\(B=\frac{E}{c}\)

Here we have B as the magnetic field, E as the electric field, and c as the velocity of light.

The maximum force exerted is written as follows;

\(F _{max}=eBv\)

Here we have B as the magnetic field, v is the speed and e is the electron.

CALCULATION:

Given: E = 800 sin ω \(\left( {{\rm{t}}\,{\rm{ - }}\,\frac{{\rm{x}}}{{\rm{c}}}} \right)\)

\(v = 3 \times 10^7\)

As we know,

\(B=\frac{E}{c}\)

Now, on putting the values we have;

\(B=\frac{800 sin \omega (t - \frac{x}{c})}{c}\)

⇒ \(B=\frac{800 }{3 \times 10 ^8}\)

As we know,

\(F _{max}=eBv\)

⇒ \(F _{max}=1.6 \times 10^{-19} \times \frac{800}{3 \times 10^8} \times 3 \times 10^7\)

⇒ \(F _{max}=12.8 \times 10^{-18} \) N

Hence, option 2) is the correct answer.

Magnetic Force - Definition of B Question 3:

Consider three long straight parallel wires as shown in figure. Find the force experienced by a 25 cm length of wire C.

F1 Shraddha Tapesh 14.01.2021 D2

  1. 0.5 × 10-4 N
  2. 1 × 10-4 N
  3. 2 × 10-4 N
  4. 3 × 10-4

Answer (Detailed Solution Below)

Option 4 : 3 × 10-4

Magnetic Force - Definition of B Question 3 Detailed Solution

Concept:

The magnetic field produced by a steady current flowing in a very long straight wire. The magnitude of the magnetic field is

\(B = \frac{{{\mu _0}I}}{{2\pi R}}\)

  • Parallel wires carrying currents will exert forces on each other.
  • Each wire produces a magnetic field, which influences the other wire. 
  • When the currents in both wires flow in the same direction, then the force is attractive
  • When the currents flow in opposite directions, then the force is repulsive.

The force exerted on wires can be given by:

\(F= \frac{{{\mu _0}}}{{2\pi }}\frac{{{I_1}{I_2}}}{{{r_1}}} \times Length\;of\;wire\)

Calculation:

Repulsion by wire D,       

\({F_1} = \frac{{{\mu _0}}}{{2\pi }}\frac{{{i_1}{i_2}l}}{r}\)   [towards right]

\(\frac{{\left( {2 \;\times\; {{10}^{ - 7}}} \right)\left( {30\; \times\; 10} \right)}}{{3\; \times\; {{10}^{ - 2}}}}\left( {0.25} \right)\)

= 5 × 10-4 N

Repulsion by wire G,

\({F_2} = \frac{{\left( {2\; \times\; {{10}^{ - 7}}} \right)\left( {20\; \times\; 10} \right)}}{{5\; \times \;{{10}^{ - 2}}}}\left( {0.25} \right)\)   [towards left]

= 2 × 10-4 N

∴ Fnet = F1 – F2

= 3 × 10-4 N  [towards right]

Magnetic Force - Definition of B Question 4:

A ring of radius R having uniformly distributed charge Q is mounted on a rod suspended by two identical strings. The tension in strings in equilibrium is T0. Now a vertical magnetic field is switched on and ring is rotated at constant angular velocity ω. The maximum ω with which the ring can be rotated if the strings can withstand a maximum tension of 3T0/2 is found to be proportional to B and R as ωmax ∝ BαRβ  . The value of α - β is 

qImage681db4afbd4a0befbd78458f

Answer (Detailed Solution Below) 1

Magnetic Force - Definition of B Question 4 Detailed Solution

Calculation:

Initially, forces acting on the rod-ring system are weight mg and tension 2T0. In equilibrium, mg = 2T0.

The ring takes time T = 2π/ω to complete one revolution, setting a current i and magnetic moment μ, given by:

i = Q / T = Qω / (2π),    μ = iA = (1/2) ω Q R2

The direction of μ is towards the right. The torque on the loop is τ = |μ × B| = (1/2) ω B Q R2 (anticlockwise).

To balance this torque, tensions in the strings change to new values T1 and T2 such that T1 > T2. In equilibrium, the resultant force and resultant torque about the centre of the disc are zero.

T1 + T2 = mg        (1)

T1(D/2) - T2(D/2) = (1/2) ωBQR2       (2)

from (1) and (2) we get

T1 = T0 + ωBQR2/ (2D) 

⇒ ωmax = (DT0)/ (BQR2)

Thus by comparing we have α - β is -1 +2 = 1.

Magnetic Force - Definition of B Question 5:

A circular wire loop of radius R is bent along a diameter and shaped as shown in the figure. One semicircular arc (KNM) lies in the x-z plane, while the other semicircular arc (KLM) lies in the y-z plane, both with their centers at the origin. A current I flows through each arc as illustrated.If a uniform magnetic field B₀ in the y-direction is applied, find the total force on the loop is βiB0R . The value of β is 

qImage681db1937cce4e6fc9bc8105

Answer (Detailed Solution Below) 4

Magnetic Force - Definition of B Question 5 Detailed Solution

Calculation:
For the semicircle KNM lying in the x-z plane, take a small element at angle θ. The force on a current element is dF = I × (dl × B).

qImage681db1937cce4e6fc9bc810a

Calculating and integrating over the arc, we find the force F₂ = 2IB₀R î.

For the semicircle KLM in the y-z plane, again consider a small element at angle θ.

qImage681db1947cce4e6fc9bc810c

Following the same procedure, the total force on this arc is F₁ = 2IB₀R î.

The total force on the loop is:

F = F₁ + F₂ = 4IB₀R î

 F₁ = F₂ = 2IB₀R î, so net force F = 4IB₀R î

Magnetic Force - Definition of B Question 6:

Consider a long thin conducting wire carrying a uniform current I. A particle having mass “M” and charge “q” is released at a distance “a" from the wire with a speed vo along the direction of current in the wire. The particle gets attracted to the wire due to magnetic force. The particle turns round when it is at distance x from the wire. The value of x is [μ0 is vacuum permeability] 

  1. \(\mathrm{a}\left[1-\frac{\mathrm{mv}}{2 q \mu_{\mathrm{o}} \mathrm{I}}\right]\)
  2. \(\frac{\mathrm{a}}{2}\)
  3. \(\mathrm{a}\left[1-\frac{\mathrm{mv}}{\mathrm{o}} \mathrm{q}_{\mathrm{o}} \mathrm{I}\right]\)
  4. \(a e^{\frac{-4 \pi m v_{0}}{q \mu_{0} I}}\)

Answer (Detailed Solution Below)

Option 4 : \(a e^{\frac{-4 \pi m v_{0}}{q \mu_{0} I}}\)

Magnetic Force - Definition of B Question 6 Detailed Solution

Calculation:

qImage67b717180e68229e730d9975

A → B

\(\overrightarrow{\mathrm{V}}=-v_{x} \hat{\mathrm{i}}+\mathrm{v}_{\mathrm{y}} \hat{\mathrm{j}}\)

\(\overrightarrow{\mathrm{B}}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}(-\hat{\mathrm{k}})\)

\(\overrightarrow{\mathrm{F}}=\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})=\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{r}}\left[-\mathrm{v}_{\mathrm{x}} \hat{\mathrm{j}}-\mathrm{v}_{\mathrm{y}} \hat{\mathrm{i}}\right]\)

\(\mathrm{a}_{\mathrm{x}}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \cdot \frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{r}}\)

\(\mathrm{a}_{\mathrm{y}}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \cdot \frac{\mathrm{v}_{\mathrm{x}}}{\mathrm{r}}\)

\(\frac{\mathrm{v}_{\mathrm{x}} \mathrm{dv}_{\mathrm{x}}}{\mathrm{dr}}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{r}}\)

\(\frac{\mathrm{v}_{\mathrm{x}} \mathrm{dv}_{\mathrm{x}}}{\mathrm{v}_{\mathrm{y}}}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \frac{\mathrm{dr}}{\mathrm{r}}\)

\(\int_{0}^{\mathrm{v}_{0}} \frac{\mathrm{v}_{\mathrm{x}} \mathrm{dv}_{\mathrm{x}}}{\sqrt{\mathrm{v}_{0}^{2}-\mathrm{v}_{\mathrm{x}}^{2}}}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \int_{\mathrm{a}}^{\mathrm{x}_{1}} \frac{\mathrm{dr}}{\mathrm{r}}\)

Let, z2 = v02 – vx2

2zdz = –2vx dvx

zdz = – vx dvx

\(\frac{\mathrm{v}_{\mathrm{x}} \mathrm{dv}_{\mathrm{x}}}{\sqrt{\mathrm{v}_{0}^{2}-\mathrm{v}_{\mathrm{x}}^{2}}}=\frac{-\mathrm{zdz}}{\mathrm{z}}=-\mathrm{dz}\)

then integral becomes 

\(-\int_{\mathrm{v}_{0}}^{0} \mathrm{dz}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \ln \frac{\mathrm{x}_{1}}{\mathrm{a}}\)

\(\mathrm{v}_{0}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \ln \frac{\mathrm{x}_{1}}{\mathrm{a}}\)

\(\mathrm{X}_{1}=\mathrm{a} \mathrm{e}^{-\frac{2 \pi \mathrm{mv}_{0}}{\mu_{0} \mathrm{Iq}}} \ldots \ldots .(1)\)

For B → C 

\(\overrightarrow{\mathrm{v}}=-v_{x} \hat{\mathrm{i}}-v_{y} \hat{\mathrm{j}}\)

\(\overrightarrow{\mathrm{B}}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}(-\hat{\mathrm{k}})\)

\(\overrightarrow{\mathrm{F}}=\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})=\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{r}}\left(-\mathrm{v}_{\mathrm{x}} \hat{\mathrm{j}}+\mathrm{v}_{\mathrm{y}} \hat{\mathrm{i}}\right)\)

\(\mathrm{a}_{\mathrm{x}}=+\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{r}} \quad \mathrm{a}_{\mathrm{y}}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \cdot \frac{\mathrm{v}_{\mathrm{x}}}{\mathrm{r}}\)

\(\frac{\mathrm{v}_{\mathrm{x}} \mathrm{dv}_{\mathrm{x}}}{\mathrm{dr}}=\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{r}}\)

\(\int_{v_{0}}^{0} \frac{v_{x} \mathrm{dv}_{x}}{\sqrt{v_{0}^{2}-v_{x}^{2}}}=\frac{\mu_{0} I \mathrm{Iq}}{2 \pi m} \int_{x_{1}}^{\mathrm{x}} \frac{\mathrm{dr}}{\mathrm{r}}\)

\(\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \ln \frac{\mathrm{x}}{\mathrm{x}_{1}}=-\int_{0}^{\mathrm{v}_{0}} \mathrm{~d} \mathrm{z}=-\mathrm{v}_{0}\)

\(X=X_{1} e^{-\frac{2 \pi m v_{0}}{\mu_{0} \mathrm{Iq}}} \ldots \ldots(2)\)

From equation 1 and 2 

\(X=a e^{-\frac{4 \pi m v_{0}}{\mu_{0} \mathrm{Iq}}}\)

Magnetic Force - Definition of B Question 7:

A small square loop of wire of side l is placed inside a large square loop of wire L(L>>l). Both loops are coplanar and their centres coincide at point O as shown in figure. The mutual inductance of the system is :

F1 Priyas Physics  20 09 2024 D20

  1. \(\frac{2 \sqrt{2} \mu_0 L^2}{\pi I}\)
  2. \(\frac{\mu_0 I^2}{2 \sqrt{2} \pi L}\)
  3. \(\frac{2 \sqrt{2} \mu_0 I^2}{\pi L}\)
  4. \(\frac{\mu_0 L^2}{2 \sqrt{2} \pi I}\)
  5. \(\frac{\mu_0 L}{2 \sqrt{2} \pi I}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{2 \sqrt{2} \mu_0 I^2}{\pi L}\)

Magnetic Force - Definition of B Question 7 Detailed Solution

 Concept:

  • Mutual Inductance is a measure of the ability of one circuit to induce an electromotive force (EMF) in another circuit through a change in current.
  • The SI unit of mutual inductance is the Henry (H).
  • Magnetic Flux (Φ) is the total magnetic field passing through a given area.
  • The SI unit of magnetic flux is the Weber (Wb).
  • The mutual inductance M between two loops is given by: M = (N₂Φ₂) / I₁,

where Φ₂ = magnetic flux through the second loop due to the current I₁ in the first loop.

  • When a current I flows through a loop of wire, it produces a magnetic field B at a distance from the loop, and the magnetic field strength at the center of a square loop of side length L is given by:
  • B = (μ₀I) / (2L),

Where μ₀ = permeability of free space.

Calculation:

Here,
Side of small loop = l
Side of large loop = L
Current in large loop = i
Permeability of free space = μ₀

We know, ϕ = Mi

⇒ \(\phi \simeq\left[4 \times \frac{\mu_0 i}{4 \pi(L / 2)}\left[\sin 45^{\circ}+\sin 45^{\circ}\right]\right] \times \text { Area }\)

\(\frac{2 \sqrt{2} \mu_0 i}{\pi L} \times I^2\)

⇒ \(M=\frac{\phi}{i}=\frac{2 \sqrt{2} \mu_0 I^2}{\pi L}\)

The mutual inductance of the system is M = \(\frac{2 \sqrt{2} \mu_0 I^2}{\pi L}\)

∴ The correct option is 3

Magnetic Force - Definition of B Question 8:

A magnetic field does not interact with:

  1. An electric charge at rest.
  2. A moving electric charge
  3. A current carrying straight conductor
  4. A moving permanent magnet

Answer (Detailed Solution Below)

Option 1 : An electric charge at rest.

Magnetic Force - Definition of B Question 8 Detailed Solution

Calculation:
A magnetic field does not exert a force on a stationary electric charge. The magnetic component of the Lorentz force is proportional to the velocity of the charge. If the charge is at rest, the velocity is zero, so the magnetic force is zero. The Lorentz force is given by:

F = q(E + v × B)

Since v = 0 for a stationary charge, the magnetic force component (v × B) is zero, and a magnetic field does not interact with a stationary electric charge.

Magnetic Force - Definition of B Question 9:

A horizontal semi-circular wire of radius r is connected to a battery through two similar springs X and Y to an electric cell, which sends current I through it. A vertically downward uniform magnetic field B is applied on the wire, as shown in the figure. What is the force acting on each spring?

qImage67159d0d9af215741d5282d3

  1. 2πrBI
  2. \(\rm \frac{1}{2}\pi rBI\)
  3. BIr
  4. 2BIr

Answer (Detailed Solution Below)

Option 3 : BIr

Magnetic Force - Definition of B Question 9 Detailed Solution

Concept:

The force on a current-carrying conductor in a magnetic field is given by:

\(F = I \cdot (L \times B)\)

Where:

  • I: Current through the conductor (in amperes).
  • L: Length of the conductor (in meters).
  • B: Magnetic field strength (in tesla).

For a semicircular conductor of radius r, the length of the conductor is given by \(L = \pi r.\)

Force is distributed equally between the two springs, and hence, each spring experiences half of the total force.

Calculation:

Given:

  • Current through the wire, I.
  • Radius of the semicircular wire, r.
  • Magnetic field strength, B.

Using the formula for the total force:

\(⇒ F = I \cdot L \cdot B\\ ⇒ F = I \cdot (\pi r) \cdot B\)

Force on each spring is:

\(⇒ T = \frac{F}{2}\\ ⇒ T = \frac{I \cdot (\pi r) \cdot B}{2} \\ ⇒ T = I \cdot r \cdot B\)

∴ The force acting on each spring is\( I \cdot r \cdot B\).

The correct option is 3).

Magnetic Force - Definition of B Question 10:

As shown in the figure, a metallic rod of linear density 0.45 kg m–1 is lying horizontally on a smooth inclined plane which makes an angle of 45° with the horizontal. The minimum current flowing in the rod required to keep it stationary, when 0.15 T magnetic field is acting on it in the vertical upward direction, will be : {Use g = 10 m/s2}

F1 Engineering PriyaS 18 9 24  D9

  1. 30 A
  2. 15 A
  3. 10 A
  4. 3 A

Answer (Detailed Solution Below)

Option 1 : 30 A

Magnetic Force - Definition of B Question 10 Detailed Solution

Concept:  

To solve the problem, we need to balance the forces acting on the rod.

Gravitational force component along the incline:

F= mgsinθ 

Magnetic force

Fm = ILBsinθ 

Calculation: 

Given:

Linear density of the rod λ = 0.45kg/m

Magnetic field: B = 0.15 T

Angle of the incline θ = 45

Acceleration due to gravity: g = 10m/s2

The mass per unit length of the rod is represented by m = λ.L 

For the rod to remain stationary, the magnetic force must balance the component of the gravitational force along the incline:

⇒ ILBsinθ  = mgsinθ 

⇒ ILB = λLg

⇒ I = \(\frac{\lambda.g}{B}\)

⇒ I = \(\frac{0.45 \times 10}{0.15} = 30\)

∴ the minimum current required to keep the rod stationary is 30 A.

Get Free Access Now
Hot Links: mpl teen patti teen patti royal - 3 patti teen patti master online teen patti diya teen patti star apk