Break Points MCQ Quiz in தமிழ் - Objective Question with Answer for Break Points - இலவச PDF ஐப் பதிவிறக்கவும்
Last updated on Mar 18, 2025
Latest Break Points MCQ Objective Questions
Top Break Points MCQ Objective Questions
Break Points Question 1:
The OLTF of a unity feedback system is given by \(G\left( s \right) = \frac{K}{{s\left( {s + 1} \right)\left( {s + 2} \right)}}\). The breakaway point of the root locus plot is given by:
Answer (Detailed Solution Below)
Break Points Question 1 Detailed Solution
Concept:
Break-in/away points exist when there are multiple roots on the root locus diagram.
At the breakpoints gain K is either maximum and/or minimum.
So, the roots of \(\frac{{dK}}{{ds}}\) are the break points.
Calculation:
The characteristic equation is obtained as:
1+ OLTF = 0, i.e.
\(\;1 + \frac{K}{{s\left( {s + 1} \right)\left( {s + 2} \right)}} = 0\)
\(\Rightarrow \frac{K}{{s\left( {s + 1} \right)\left( {s + 2} \right)}} = - 1\)
⇒ K = -s(s2 + 3s + 2)
⇒ K = -s3 – 3s2 – 2s
\(\Rightarrow \frac{{dK}}{{ds}} = - 3{s^2} - 6s - 2 = 0\)
⇒ 3s2 + 6s + 2 = 0
\(s = \frac{{ - 6 \pm \sqrt {36 - 24} }}{6} \)
\(s= \frac{{ - 6 \pm \sqrt {12} }}{6} = \frac{{ - 6 + \sqrt {12} }}{6}\)
\(s= - 0.422\)
- Every branch of a root locus diagram starts at a pole (K = 0) and terminates at a zero (K = ∞) of the open-loop transfer function.
- The root locus diagram is symmetrical with respect to the real axis.
- The number of branches of the root locus diagram is:
N = P if P ≥ Z
= Z, if P ≤ Z
- Number of asymptotes in a root locus diagram = |P – Z|
- Centroid: It is the intersection of the asymptotes and always lies on the real axis. It is denoted by σ.
\(\sigma = \frac{{\sum {P_i} - \sum {Z_i}}}{{\left| {P - Z} \right|}}\)
ΣPi is the sum of real parts of finite poles of G(s)H(s)
ΣZi is the sum of real parts of finite zeros of G(s)H(s)
- The angle of asymptotes: \({\theta _l} = \frac{{\left( {2l + 1} \right)\pi }}{{P - Z}}\)
l = 0, 1, 2, … |P – Z| – 1
- On the real axis to the right side of any section, if the sum of a total number of poles and zeros are odd, root locus diagram exists in that section.
Break Points Question 2:
An open-loop pole-zero plot is shown below:
Which of the following is correct:
Answer (Detailed Solution Below)
Break Points Question 2 Detailed Solution
Concept:
- The common method of obtaining the breakaway and break in point is to maximize and minimize the gain K, using differentiation, i.e equating \(\frac{{dK}}{{ds}}\) to zero and solving for s, we get the possible break away and break-in point.
- Gain K will be maximum at breakaway point and minimum at break-in.
- For gain K, the point at which multiple roots are present is known as the breakpoint. These are obtained from:\( \Rightarrow \frac{{dK}}{{ds}} = 0\)
Calculation:
Given open-loop pole-zero plot of the system. From the given plot, we have the zeroes and poles as:
Zeroes: s = 1 + j and s = 1 – j
Poles: s = -2 and s = -3
So, the Transfer Function of the system is obtained as;
\(H\left( s \right)G\left( s \right) = \frac{{K\left\{ {\left( {s\left( {1 + j} \right)} \right)\left( {s - \left( {1 - j} \right)} \right)} \right\}}}{{\left( {s + 2} \right)\left( {s + 3} \right)}}\)
\( = \frac{{K\left( {s - 1 - j} \right)\left( {s - 1 + j} \right)}}{{\left( {s + 2} \right)\left( {s + 3} \right)}}\)
\( = \frac{{K\left[ {{{\left( {s - 1} \right)}^2} - {{\left( j \right)}^2}} \right]}}{{\left( {s + 2} \right)\left( {s + 3} \right)}}\)
\( \Rightarrow G\left( s \right)H\left( s \right) = \frac{{K\left( {{{\left( {s + 1} \right)}^2} + 1} \right)}}{{\left( {s + 2} \right)\left( {s + 3} \right)}} = \frac{{K\left( {{s^2} - 2 + 2} \right)}}{{\left( {s + 2} \right)\left( {s + 3} \right)}}\)
The characteristic equation is 1 + G(s).H(s) = 0
i.e. \(1 + \frac{{K\left( {{s^2} - 2s + 2} \right)}}{{\left( {s + 2} \right)\left( {s + 3} \right)}} = 0\)
\( \Rightarrow \frac{{K\left( {{s^2} - 2s + 2} \right)}}{{\left( {s + 2} \right)\left( {s + 3} \right)}} = - 1\)
\( \Rightarrow K = \frac{{ - \left( {s + 2} \right)\left( {s + 3} \right)}}{{{s^2} - 2s + 2}} = \frac{{ - \left( {{s^2} + 5s + 6} \right)}}{{{s^2} - 2s + 2}}\)
Solving for \(\frac{{dK}}{{ds}} = 0\), we get
\( \Rightarrow \frac{{ - \left[ {\left( {{s^2} - 2s + 2} \right)\left( {2s + 5} \right) - \left( {{s^2} + 5s + 6} \right)\left( {2s - 2} \right)} \right]}}{{{{\left( {{s^2} + 2s + 2} \right)}^2}}} = 0\)
\( \Rightarrow \frac{{2{s^3} + 5{s^2} - 4{s^2} - 10s + 4s + 10 - 2{s^3} + 2{s^2} - 10{s^2} + 10s - 12s + 12}}{{{{\left( {{s^2} - 2s + 2} \right)}^2}}} = 0\)
⇒ s2 – 8s2 – 10s + 4s – 2s + 22 = 0
⇒ -7s2 – 12 s + 4 s + 22 = 0
⇒ 7s2 + 8 s - 22 s = 0
⇒ s = +1.29 and s = -2.43
Since, the point s = -2.43 is Maxima for gain K,
So, s = -2.43 is the break-away point.
Break Points Question 3:
The forward path transfer function of a unity feedback control system is
\(G\left( s \right) = \frac{{k\left( {s + \alpha } \right)}}{{{s^2}\left( {s + 3} \right)}}\)
Determine the value of α so that root loci will have no real breakaway point, not including the one at s = 0
Answer (Detailed Solution Below)
Break Points Question 3 Detailed Solution
Characteristic equation 1 + G(s) = 0
\(1 + \frac{{k\left( {s + \alpha } \right)}}{{{s^2}\left( {s + 3} \right)}} = 0\)
s3 + 3s2 + k(s + α) = 0
\(k = - \frac{{{s^3} + 3{s^2}}}{{\left( {s + \alpha } \right)}}\)
\(\frac{{dk}}{{ds}} = \frac{{\left( {s + \alpha } \right)\left( {3{s^2} + 6s} \right) - \left( {{s^3} + 3{s^2}} \right)}}{{{{\left( {s + \alpha } \right)}^2}}} = 0\)
3s3 + 6s2 + 3αs2 + 6sα – s3 – 3s2 = 0
2s3 + (3 + 3aα)s2 + 6sα = 0
2s2 + 3(1 + α)s + 6α = 0
The roots of the breakaway-point equation are:
\(s = \frac{{ - 3\left( {1 + \alpha } \right)\;}}{4} \pm \frac{{\sqrt {9{{\left( {1 + \alpha } \right)}^2} - 48\alpha } }}{4}\)
For no breakaway point other that at s = 0
Set,
9 (1 + α)2 – 48 α < 0
3(α)2 – 10 α + 3 < 0
(3α-1)(α-3) < 0
Or, 0.333 < α < 3
Break Points Question 4:
The forward path transfer function of a unity-feedback control system is
\(G\left( s \right) = \frac{{k\left( {s + \alpha } \right)}}{{{s^2}\left( {s + 3} \right)}}\)
Determine the maximum value of ‘α’ so that the root loci will have no real breakaway points except at s = 0Answer (Detailed Solution Below) 3
Break Points Question 4 Detailed Solution
Characteristic equation = 1 + G(s).H(s)
= s2(s + 3) + k(s + α) = 0
\( \Rightarrow k = \frac{{ - {s^2}\left( {s + 3} \right)}}{{\left( {s + \alpha } \right)}}\)
For breakaway point
\(\frac{{dk}}{{ds}} = \frac{{\left[ {3{s^2} + 6s} \right]\left[ {s + \alpha } \right] - \left[ {{s^3} + 3{s^2}} \right]}}{{{{\left( {s + \alpha } \right)}^2}}} = 0\)
\(\frac{{dk}}{{ds}} = \left( {3{s^3} + \left( {3\alpha + 6} \right){s^2} + 6\alpha s} \right) - \left( {{s^3} + 3{s^2}} \right) = 0\)
= 2s3 + 3 (1 + α) s2 + 6 α s = 0
= s[2s2 + 3 (1 + α) s + 6α] = 0
s = 0,
2s2 + 3(1 + α) s + 6α = 0
\(s = \frac{{ - 3\left( {1 + \alpha } \right) \pm \sqrt {9{{\left( {1 + \alpha } \right)}^2} -48\;\alpha } }}{4}\)
For no real breakaway points other than s = 0
9(1 + α)2 – 48 α < 0
9[1 + α2 + 2α] – 48α < 0
9α2 + 18α + 9 – 48α < 0
9α2 – 30 α + 9 < 0
3α2 – 10α + 3 < 0
0.33 < α < 3
Break Points Question 5:
The loop transfer function of a closed-loop system is given by \(G\left( s \right)H\left( s \right) = \frac{{K\left( {s + 6} \right)}}{{s\left( {s + 2} \right)}}\). The breakaway point of the root-loci will be ______.
Answer (Detailed Solution Below) -1.2 - -1
Break Points Question 5 Detailed Solution
\(\begin{array}{l} G\left( s \right)H\left( s \right) = \frac{{k\left( {s + 6} \right)}}{{s\left( {s + 2} \right)}}\\ k = \frac{{ - s\left( {s + 2} \right)}}{{\left( {s + 6} \right)}} = \frac{{ - \left( {{s^2} + 2s} \right)}}{{\left( {s + 6} \right)}}\\ \frac{{dk}}{{ds}} = 0 \end{array}\)
\(\Rightarrow - \left[ {\frac{{\left( {s + 6} \right)\left( {2s + 2} \right) - \left( {{s^2} - 2s} \right)\left( 1 \right)}}{{{{\left( {s + 6} \right)}^2}}}} \right] = 0\)
⇒ 2s2 + 12s + 2s + 12 – s2 – 2s = 0
⇒ s2 + 12s + 12 = 0
⇒ s = -1.1, -10.9
s = -1.1 is the breakaway point
s = -10.9 is the break in pointBreak Points Question 6:
The open loop transfer function of a unity feedback system is \(G\left( s \right) = \frac{{K\left( {s + 2} \right)}}{{\left( {s + 1 + j1} \right)\left( {s + 1 - j1} \right)}}\)
The root locus plot of the system has
Answer (Detailed Solution Below)
Break Points Question 6 Detailed Solution
Given, \(G\left( s \right)H\left( s \right) = \frac{{k\left( {s + 2} \right)}}{{{s^2} + 2s + 2}}\)
For breakaway point
\(K = \frac{{ - \left( {{s^2} + 2s + 2} \right)}}{{s + 2}}\)
\(\frac{{dK}}{{ds}} = 0\)
\( \Rightarrow \frac{{\left( {s + 2} \right)\left( {2s + 2} \right) - \left( {{s^2} + 2s + 2} \right)\left( 1 \right)}}{{{{\left( {s + 2} \right)}^2}}} = 0\)
2s2 + 6s + 4 – s2 – 2s – 2 = 0
s2 + 4s + 2 = 0
\(s = \frac{{ - 4 \pm \sqrt {16 - 8} }}{2}\)
\( = - 2 \pm \sqrt 2 \)
= -0.586 or -3.41Break Points Question 7:
The open loop transfer function of a unity feedback control system is given by \(G\left( s \right) = \frac{{k\left( {s + 4} \right)}}{{s\left( {s + 1} \right)}}\). The value of the gain ‘k’ so that the system is critically damped is –
Answer (Detailed Solution Below)
Break Points Question 7 Detailed Solution
Given that \(G\left( s \right) = \frac{{k\left( {s + 4} \right)}}{{s\left( {s + 1} \right)}},H\left( s \right) = 1\)
\(G\left( s \right)H\left( s \right) = \frac{{k\left( {s + 1} \right)}}{{s\left( {s + 1} \right)}}\)
Characteristic equation, 1 + G(s) H(s) = 0
\(\begin{array}{l} \Rightarrow 1 + \frac{{k\left( {s + 4} \right)}}{{s\left( {s + 1} \right)}} = 0\\ \Rightarrow k = \frac{{ - s\left( {s + 1} \right)}}{{\left( {s + 4} \right)}} \end{array}\)
At break point,
\(\begin{array}{l} \frac{{dk}}{{dx}} = 0\\ \Rightarrow \frac{d}{{ds}}\left( {\frac{{ - s\left( {s + 1} \right)}}{{\left( {s + 4} \right)}}} \right) = 0\\ \Rightarrow \frac{{ - \left( {s + 4} \right)\left( {2s + 1} \right) + \left( {{s^2} + s} \right)\left( 1 \right)}}{{{{\left( {s + 4} \right)}^2}}} \end{array}\)
⇒ -(s + 4) (2s + 1) + s2 + s = 0
⇒ -2s2 – 4 – 8s – s + s2 + s = 0
⇒ s2 + 8s + 4 = 0
⇒ s = -0.53 and s = -7.46
The given system is critically damped.
At s = -0.53
\(k = \left| {\frac{{ - s\left( {s + 1} \right)}}{{\left( {s + 4} \right)}}} \right| = \frac{{0.53\left( { - 0.53 + 1} \right)}}{{\left( { - 0.53 + 4} \right)}} = 0.07\)
At s = -7.46,
\(k = \left| {\frac{{ - s\left( {s + 1} \right)}}{{\left( {s + 4} \right)}}} \right| = \frac{{\left( {7.46} \right) - \left( {7.46 + 1} \right)}}{{\left( { - 7.46 + 4} \right)}} = 13.93\)
The value of gain k at system is critically damped is, k = 0.07 and 13.93Break Points Question 8:
For a unity feedback system forward path transfer function is \(G\left( s \right) = \frac{{k\left( {s + 6} \right)}}{{\left( {s + 3} \right)\left( {s + 5} \right)}}\)
The breakaway point and break in points are located respectivelyAnswer (Detailed Solution Below)
Break Points Question 8 Detailed Solution
\(\begin{array}{l} \frac{1}{{\sigma + 6}} = \frac{1}{{\sigma + 3}} + \frac{1}{{\sigma + 5}}\\ \Rightarrow \sigma = - 4.27,\; - 7.73 \end{array}\)
From the root locus it’s clear that breakaway point is between -3 and -5 and break in point is between -6 and –∞. Hence option (D) is correct.
Break Points Question 9:
A unity feedback system with forward TF \(G\left( s \right) = \frac{k}{{s\left( {s + 4} \right)\left( {s + 5} \right)}}\) has a break away point at
Answer (Detailed Solution Below)
Break Points Question 9 Detailed Solution
\(G\left( s \right) = \frac{k}{{s\left( {s + 4} \right)\left( {s + 5} \right)}}\)
For break points,
\(\begin{array}{l} \frac{{dk}}{{ds}} = 0\\ \Rightarrow \frac{d}{{ds}}\left( {{s^3} + 9{s^2} + 20s} \right) = 0\\ \Rightarrow 3{s^2} + 18s + 20 = 0\\ \Rightarrow s = - 1.472,\; - 4.5275 \end{array}\)
-4.5275 is not on the root locus branch.Break Points Question 10:
The feedback configuration and the pole-zero locations of
\(G\left( s \right) = \frac{{{s^2} - 2s + 2}}{{{s^2} + 2s + 2}}\)
are shown below. The root locus for negative values of k, i.e. for -∞ < k < 0, has breakaway / break-in points and angle of departure at pole P (with respect to the positive real axis) equal to
Answer (Detailed Solution Below)
± √2 and -45°
Break Points Question 10 Detailed Solution
\(1 + G\left( s \right)H\left( s \right) = 0\)
\(1 + k\frac{{\left( {{s^2} - 2s + 2} \right)}}{{{s^2} + 2s + 2}} = 0\)
\(k = - \frac{{{s^2} + 2s + 2}}{{{s^2} - 2s + 2}}\)
For break away & break in point differentiating above w. r. t s
\(\frac{{dk}}{{ds}} = - \frac{{\left( {{s^2} - 2s + 2} \right)\left( {2s + 2} \right) - \left( {{s^2} + 2s + 2} \right)\left( {2s - 2} \right)}}{{{{\left( {{s^2} - 2s + 2} \right)}^2}}} = 0\)
\(2{s^3} - 2{s^2} + 4 - \left( {2{s^3} + 2{s^2} - 4} \right) = 0\)
\({s^2} = 2\)
\(s = \pm \sqrt 2\)
Angle of departure at pole P, then
\({Q_d} = + 180 + \left( {{\rm{\Sigma }}{\phi _p} - {\rm{\Sigma }}{\phi _z}} \right)\)
\({Q_d} = 180 + \left( {90 - \left( {180 + 135} \right)} \right)\)
= -45°