यदि एक शाफ़्ट व्यास d बंकन आघूर्ण M के अधीन है, तो शाफ़्ट में प्रेरित बंकन प्रतिबल (σb) क्या है?

This question was previously asked in
APPSC Lecturer (Polytechnic Colleges) Held on March 2020
View all APPSC Polytechnic Lecturers Papers >
  1. \({\sigma _b} = \left( {\frac{{32M}}{{\pi {d^3}}}} \right)\)

  2. \({\sigma _b} = \left( {\frac{{16M}}{{\pi {d^3}}}} \right)\)
  3. \({\sigma _b} = \left( {\frac{{32M}}{{\pi {d^2}}}} \right)\)
  4. \({\sigma _b} = \left( {\frac{{64M}}{{\pi {d^4}}}} \right)\)

Answer (Detailed Solution Below)

Option 1 :

\({\sigma _b} = \left( {\frac{{32M}}{{\pi {d^3}}}} \right)\)

Detailed Solution

Download Solution PDF

वर्णन:

बंकन समीकरण

\(\frac{{{{\rm{\sigma }}_{\rm{b}}}}}{{\rm{y}}} = \frac{{\rm{M}}}{{\rm{I}}} = \frac{{\rm{E}}}{{\rm{R}}}\)

जहाँ

σb = बंकन प्रतिरोध, y = इसके तटस्थ अक्ष से अनुप्रस्थ-काट पर फाइबर की दूरी

M = बंकन आघूर्ण, I = जड़त्वाघूर्ण क्षेत्रफल, E = यंग के बीम पदार्थ के प्रत्यास्थता का मापांक,

R = तटस्थ अक्ष के लिए वक्रता की त्रिज्या, Z = अनुभाग मापांक

\({\sigma _b} = \frac{{My}}{I} = \frac{M}{Z}\)

\(I = \frac{{\pi \times {d^4}}}{{64}}\) , \(Y = \frac{d}{2}\)

\(Z = \frac{I}{Y}= \frac{{\pi \times {d^3}}}{{32}}\)

\({\sigma _b} = \frac{M}{Z}= \;\frac{M}{{\;\frac{\pi }{{32}} \times {d^3}}}\)

\({\sigma _b} = \frac{{32M}}{{\pi {d^3}}}\)

Latest APPSC Polytechnic Lecturers Updates

Last updated on May 17, 2025

-> The APPSC Polytechnic Lecturer exam has been postponed.

-> The APPSC Polytechnic Lecturer Notiifcation was released for 99 vacancies.

-> Candidates with a Bachelor’s Degree in the respective discipline are eligible for this post.

-> Prepare for the exam with APPSC Polytechnic Lecturer Previous Year Papers.

More Effect on Shaft Questions

More Torsion of Shaft Questions

Get Free Access Now
Hot Links: teen patti vungo teen patti 500 bonus happy teen patti teen patti king teen patti club apk