Question
Download Solution PDFIf X̅ is the mean of x1, x2, x3, ...xn, then for a ≠ 0, the mean of (ax1, ax2, ax3, ... axn, \(\rm\frac{x_{1}}{a}, \frac{x_{2}}{a}, \frac{x_{3}}{a}, \ldots \frac{x_{n}}{a}\) is:
Answer (Detailed Solution Below)
Option 1 : \(\left(a+\frac{1}{a}\right) \bar{X} \)
Detailed Solution
Download Solution PDFGiven:
The mean of x1, x2, x3, ... xn is X̅.
We need to find the mean of the transformed values:
(ax1, ax2, ax3, ..., axn) and (x1/a, x2/a, x3/a, ..., xn/a).
Formula used:
The mean of a set of values {x1, x2, ..., xn} is:
X̅ = (x1 + x2 + ... + xn) / n
For a transformation involving multiplication by a constant **a** and division by **a**:
Calculation:
Mean of {ax1, ax2, ..., axn}:
⇒ (ax1 + ax2 + ... + axn) / n
⇒ a (x1 + x2 + ... + xn) / n
⇒ aX̅
Mean of {x1/a, x2/a, ..., xn/a}:
⇒ (x1/a + x2/a + ... + xn/a) / n
⇒ (1/a) (x1 + x2 + ... + xn) / n
⇒ (1/a) X̅
∴ The mean of the given transformed values is (a + 1/a)X̅.