यदि \(f(x)=\frac{1}{1+x}\), g(x) = f{f(x)} और h(x) = f[f{f(x)}], तो f(x).g(x).h(x) का मान है :

This question was previously asked in
AAI ATC Junior Executive 21 Feb 2023 Shift 2 Official Paper
View all AAI JE ATC Papers >
  1. \(\frac{1}{2 x}\)
  2. \(\frac{1}{2 x-3}\)
  3. \(\frac{1}{2 x+3}\)
  4. -1

Answer (Detailed Solution Below)

Option 3 : \(\frac{1}{2 x+3}\)
Free
AAI ATC JE Physics Mock Test
8.4 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

दिया गया है:

\(f(x)=\frac{1}{1+x}\)

अवधारणा:

दो फलनों की संरचना की अवधारणा का प्रयोग करें।

गणना:

\(f(x)=\frac{1}{1+x}\)

तब

\(g(x)=f(f(x))=\frac{1}{1+f(x)}\)

\(g(x)=\frac{1}{1+\frac{1}{1+x}}\)

\(g(x)=\frac{1+x}{2+x}\)

हमारे पास है \(f(f(x))=\frac{1+x}{2+x}\)

तब

\(h(x)=f(f(f(x)))=\frac{1+f(x)}{2+f(x)}\)

\(h(x)=\frac{1+\frac{1}{1+x}}{2+\frac{1}{1+x}}\)

\(h(x)=\frac{\frac{2+x}{1+x}}{\frac{2x+3}{1+x}}\)

\(h(x)=\frac{2+x}{2x+3}\)

अब,

\(f(x)\cdot g(x)\cdot h(x)=\frac{1}{1+x} \cdot\frac{1+x}{2+x}\cdot\frac{2+x}{2x+3}\)

\(f(x)\cdot g(x)\cdot h(x)=\frac{1}{2x+3}\)

अतः विकल्प (3) सही है।

Latest AAI JE ATC Updates

Last updated on Jul 4, 2025

-> AAI Junior Executive city intimation slip 2025 has been released at the official website. 

-> The AAI ATC Exam 2025 will be conducted on July 14, 2025 for Junior Executive.. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on April 4, 2025, along with the details of application dates, eligibility, and selection process.

-> A total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in the Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer-Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

More Relations and Functions Questions

Get Free Access Now
Hot Links: yono teen patti teen patti rich teen patti game paisa wala teen patti sequence