परवलय y = 3x2 और x- y + 4 = 0 से घिरा क्षेत्रफल है:

This question was previously asked in
AAI ATC Junior Executive 21 Feb 2023 Shift 2 Official Paper
View all AAI JE ATC Papers >
  1. \(16 \sqrt{2}\)
  2. \(\frac{16}{3} \sqrt{3} \)
  3. \(\frac{16}{3}\)
  4. \(\frac{16}{3} \sqrt{2}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{16}{3} \sqrt{2}\)
Free
AAI ATC JE Physics Mock Test
7.1 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

दिया गया है:

परवलय y = 3x2 और x- y + 4 = 0

संकल्पना​:

दो वक्रों y1 और y2 के बीच के क्षेत्रफल की संकल्पना को x = a और x = b के बीच लागू करने पर 

\(\rm A=\int_a^b(y_1-y_2)\ dx\)

गणना:

परवलय y = 3x2 और x- y + 4 = 0

तब 3x2 = x2 + 4

⇒ x2 = 2

⇒ x = ± √ 2

तब क्षेत्रफल है

\(\rm A=\int_{-\sqrt2}^{\sqrt2}(x^2+4-3x^2) \ dx\)

\(\rm A=\int_{-\sqrt2}^{\sqrt2}(4-2x^2) \ dx\)

\(\rm A=[4x-2\frac{x^3}{3}]_{-\sqrt2}^{\sqrt2}\)

\(\rm A=4[\sqrt2-(-\sqrt2)]-\frac{2}{3}[{\sqrt2}^3-{(-\sqrt2)}^3]\)

\(\rm A=8\sqrt2-\frac{8}{3}\sqrt2\)

\(\rm A=\frac{16\sqrt2}{3}\) वर्ग इकाई

अतः विकल्प (4) सही है।

Latest AAI JE ATC Updates

Last updated on Jun 19, 2025

-> The AAI ATC Exam 2025 will be conducted on July 14, 2025 for Junior Executive.. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on April 4, 2025, along with the details of application dates, eligibility, and selection process.

-> A total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in the Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer-Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

More Application of Integrals Questions

Get Free Access Now
Hot Links: teen patti master purana teen patti fun teen patti real cash 2024 teen patti cash game